EUROPEAN TECHNICAL ASSESSMENT BETABOLT

CONCRETE CRACKED CONCRETE

INSTYTUT TECHNIKI BUDOWLANEJ PL 00-611 WARSZAWA ul. Filtrowa 1 tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 www.itb.pl

European Technical Assessment

ETA-13/0934 of 20/04/2021

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

This version replaces

Instytut Techniki Budowlanej

BETABOLT

Concrete screw made of zinc plated steel of sizes 8, 10, 12, 14 and 16 for use in concrete

Scell-it 28, Rue Paul Dubrulle 59810 Lesquin France

SCELL-IT Plant 6

14 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document EAD 330232-00-0601 "Mechanical fasteners for use in concrete"

ETA-13/0934 issued on 12/10/2015

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The concrete screw BETABOLT of the sizes 8, 10, 12, 14 and 16 is made of heat treated and zinc plated steel (electroplated or mechanically plated). The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the fastener cuts an internal thread into a concrete member while setting. The anchorage is characterized by mechanical interlock in the special thread.

Description of the product is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristics	Performances
Characteristic resistance under static and quasi-static loading	See Annex C1 and C2
Displacements	See Annex C3

3.1.2 Safety in case of fire (BWR 2)

Essential characteristics	Performances
Reaction to fire	Anchors satisfy requirements for Class A1
Resistance to fire	See Annex C4 and C5

3.2 Methods used for the assessment

The assessment of the products has been made in accordance with the EAD 330232-00-0601 "Mechanical fasteners for use in concrete".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance (see Annex V to regulation (EU) No 305/2011) applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 20/04/2021 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Table A1: Dimensions and	materials						
Anchor size			8	10	12	14	16
Longth of anohor L	L_{min}	mm	50	55	55	65	65
	L _{max}	mm	250	350	350	350	350
Bolt diameter	Ød _k	mm	7,50	9,37	11,35	13,20	15,30
Higher thread diameter	Ød₁	mm	9,85	11,95	14,08	16,23	18,65
Lower thread diameter	$\operatorname{\text{\emph{O}}d}_2$	mm	8,13	10,25	12,15	14,18	16,03
Thread pitch	ht	mm	10	12	12	17	19
Tip chamfer	hs	mm	5	5	5	5	7
Motorial: stool	f _{uk}	N/mm ²			1000		
	f _{yk}	N/mm ²			900		
Coating			Zinc coatir or mechan	ig (≥ 5 μm); ically deposi	electroplate ited acc. to E	d acc. to EN EN ISO 1268	I ISO 4042 3

Table A2: Head types with marking

Specification of intended use

Anchorages subject to:

- Static and quasi-static loads: sizes from 8 to 16.
- Anchorages with requirements related to resistance to fire: sizes from 8 to 16.

Base material:

- Reinforced or unreinforced normal weight concrete with strength class C20/25 to C50/60 according to EN 206.
- Uncracked and cracked concrete: sizes from 8 to 16.

Use conditions (environmental conditions):

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads and under fire exposure are designed in accordance with EN 1992-4.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- Check of concrete being well compacted, e.g. without significant voids.
- Positioning of the drill holes without damaging the reinforcement.
- Anchor installation such that the effective anchorage depth is complied with.

BETABOLT

Intended use Specification

Annex B1

Γ

Table B1: Installation	paran	neter	S														
Anchor size			8				10		12			14				16	
Nominal drill bit diameter	d ₀	mm		8			10			12			14			16	
Cutting diameter of drill bit	d _{cut} ≤	mm		8,45			10,45			12,50			14,50			16,50	
Depth of drill hole	h₁≥	mm	55	60	75	60	70	85	60	70	105	70	80	125	70	80	125
Nominal anchorage depth	h _{nom}	mm	45	50	65	50	60	75	50	60	95	60	70	115	60	70	115
Effective embedment depth	h _{ef}	mm	30	34	47	33	42	54	33	42	71	40	48	86	40	49	86
Clearance hole in the fixture	df	mm		12			14			16			18			20	
Thickness of fixture	t _{fix}	mm								L - h _{non}	n						

Table B2: Minimum thickness of concrete member, minimum spacing and minimum edge distance

Anchor size			8	10	12	14	16
Minimum thickness of member	h _{min}	mm	110	110	130	150	150
Minimum edge distance	Cmin	mm	60	70	80	90	100
Minimum spacing	Smin	mm	60	70	80	90	100

Table C1: Characteristic resistance for tension loads in cracked and non-cracked concrete C20/25 to C50/60,design method A

Anchor size					8			10		12			14			16		
Nominal embed	ment depth	h _{nom}	[mm]	45	50	65	50	60	75	50	60	95	60	70	115	60	70	115
Steel failure																		
Characteristic re	esistance	$N_{Rk,s}$	[kN]		42,4			67,2			99,4			134,0)		201,0	
Partial safety fac	ctor	γ _{Ms} 1)	[-]								1,4	Ļ						
Pullout failure																		
Characteristic re in non-cracked of C20/25	esistance concrete	N _{Rk,p}	[kN]	6	6	12	6	9	16	6	9	25	9	12	35	12	17	40
Characteristic re	esistance rete C20/25	N _{Rk,p}	[kN]	3	4	7,5	4	6	9	4	6	16	5	7,5	20	9	12	25
Installation safe	ty factor	$\gamma_{inst}{}^{1)}$	[-]								1,2	2						
	concrete C30/37		[-]								1,1	7						
Increasing factor	concrete C40/50	$\Psi_{\rm c}$	[-]								1,3	2						
	concrete C50/60		[-]								1,4	2						
Concrete cone and splitting failure																		
Effective embed	lment depth	h _{ef}	[mm]	30	34	47	33	42	54	33	42	71	40	48	86	40	49	86
Factor for non-c concrete	racked	k _{ucr, N}	[-]								11,	0						
Factor for crack	ed concrete	k _{cr, N}	[-]								7,7	,						
Installation safe	ty factor	γinst	[-]								1,2	2						
	concrete C30/37		[-]								1,1	7						
Increasing factor	concrete C40/50	$\Psi_{\rm c}$	[-]								1,3	2						
	concrete C50/60		[-]								1,4	2						
Characteristic re splitting in non-c concrete	esistance for cracked	$N^0_{Rk,p}$	[kN]	6	6	12	6	9	16	6	9	25	9	12	35	12	17	40
Characteristic re splitting in crack	esistance for ed concrete	$N^0_{Rk,p}$	[kN]	3	4	7,5	4	6	9	4	6	16	5	7,5	20	9	12	25
Characteristic	concrete cone failure	S _{cr,N}	[mm]	120	120	142	140	140	162	160	160	214	180	180	260	200	200	260
spacing	splitting failure	S _{cr,sp}	[mm]	120	120	142	140	140	162	160	160	214	180	180	260	200	200	310
Edge distance	concrete cone failure	C _{cr,N}	[mm]	60	60	71	70	70	81	80	80	107	90	90	130	100	100	130
Edge distance	splitting failure	C _{cr,sp}	[mm]	60	60	71	70	70	81	80	80	107	90	90	130	100	100	155

in the absence of other national regulations

BETABOLT

Performances Characteristic resistance for tension loads Annex C1

Table C2: Characteristic resistance for shear loads in cracked and non-cracked concrete C20/25 to C50/60, design method A

Anchor size				8			10			12			14			16	
Nominal embedment depth	h _{nom}	[mm]	45	50	65	50	60	75	50	60	95	60	70	115	60	70	115
Steel failure without lever a	rm																
Characteristic resistance	$V_{Rk,s}$	[kN]		17,0			26,9			39,8			53,5			100,0	
Factor considering ductility	k7	[-]								0,8							
Partial safety factor	γ _{Ms} 1)	[-]								1,5							
Steel failure with lever arm																	
Characteristic bending resistance	M ⁰ Rk,s	[Nm]		46,8 93,2 167,7 261,8				482,3									
Partial safety factor	γ _{Ms} 1)	[-]								1,5							
Concrete pry-out failure																	
Factor	k ₈	[-]	1,0	1,0	2,0	1,0	2,0	2,0	1,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Partial safety factor	γ _{Mc} ¹⁾	[-]						1	,5							1,8	
Concrete edge failure																	
Outside diameter of anchor	d _{nom}	[mm]		8			10			12			14			16	
Effective length of anchor under shear loads	lf	[mm]	30	34	47	33	42	54	33	42	71	40	48	86	40	49	86
Partial safety factor	γ _{Mc} ¹⁾	[-]						1	,5						1,8		
Minimum thickness of member	h _{min}	[mm]	100	100	100	100	100	110	100	100	145	100	100	150	100	100	150

¹⁾ in the absence of other national regulations

BETABOLT

Performances Characteristic resistance for shear loads

Annex C2

Table C3: Displacements

Displacements							
Tension load in non-cracked	concrete	C20/25	to C50/60				
Tension load	Ν	[kN]	5,8	8,5	12,6	15,6	15,8
Short term tension displacement	δ _{NO}	[mm]	0,3	0,4	0,4	0,6	0,5
Long term tension displacement	δ _{N∞}	[mm]	1,4	1,5	1,8	1,9	0,6`
Tension load in cracked cond	rete C20)/25 to C	50/60				
Tension load	Ν	[kN]	3,2	4,0	6,9	9,6	9,9
Short term tension displacement	δ _{N0}	[mm]	0,4	0,5	0,5	0,6	0,4
Long term tension displacement	δ _{N∞}	[mm]	2,0	2,0	2,0	2,0	2,0
Shear load in non-cracked ar	nd cracke	ed concr	ete C20/25 to C5	0/60			
Shear load	V	[kN]	7	11	16	21	32
Short term shear displacement	δ _{V0}	[mm]	1,5	1,7	2,0	2,7	3
Long term shear displacement	δ_{V^∞}	[mm]	2,3	2,6	3,0	4,1	4,5

BETABOLT

Performances Displacements Annex C3

 Table C4: Characteristic resistance for tension loads under fire exposure in cracked and non-cracked concrete

 C20/25 to C50/60

						•		1
Anchor size				8	10	12	14	16
Nominal embedme	ent depth	h _{nom}	[mm]	65	75	95	115	115
Steel failure								
	R30	N _{Rk,s,fi}	[kN]	0,64	1,34	1,99	2,68	4,02
Characteristic	R60	N _{Rk,s,fi}	[kN]	0,55	1,01	1,49	2,01	3,02
resistance	R90	N _{Rk,s,fi}	[kN]	0,42	0,87	1,29	1,74	2,61
	R120	$N_{Rk,s,fi}$	[kN]	0,34	0,67	0,99	1,34	2,01
Pullout failure								
	R30	N _{Rk,p,fi}	[kN]	1,9	2,2	4,0	5,0	6,25
Characteristic	R60	N _{Rk,p,fi}	[kN]	1,9	2,2	4,0	5,0	6,25
resistance	R90	N _{Rk,p,fi}	[kN]	1,9	2,2	4,0	5,0	6,25
	R120	N _{Rk,p,fi}	[kN]	1,5	1,8	3,2	4,0	5,00
Concrete cone fa	ilure							
	R30	N _{Rk,c,fi}	[kN]	2,7	3,9	7,6	12,3	12,3
Characteristic	R60	N _{Rk,c,fi}	[kN]	2,7	3,9	7,6	12,3	12,3
resistance	R90	N _{Rk,c,fi}	[kN]	2,7	3,9	7,6	12,3	12,3
	R120	$N_{Rk,c,fi}$	[kN]	2,2	3,1	6,1	9,9	9,9
Edge distance								
	R30	C _{cr,N,fi}	[mm]					
	R60	C _{cr,N,fi}	[mm]			2 · h .		
	R90	C _{cr,N,fi}	[mm]			Z Hef		
	R120	C _{cr,N,fi}	[mm]					
In case of fire attac	ck from mor	e than one sid	le minimun	n edge distance s	hall be ≥ 300 mm			
Spacing								
	R30	S _{cr,N,fi}	[mm]					
	R60	S _{cr,N,fi}	[mm]			$4 \cdot h_{sf}$		
	R90	S _{cr,N,fi}	[mm]			· ··ei		
	R120	S _{cr,N,fi}	[mm]					
Cha	racteristic	F	BETAB(DLT nces	er fire exposure	e	Anne of Eur Technical A ETA-1:	ex C4 opean ssessment 3/0934
ena						-		

 Table C5: Characteristic resistance for shear loads under fire exposure in cracked and non-cracked concrete

 C20/25 to C50/60

Anchor size				8	10	12	14	16			
Nominal embedment dep	th	h _{nom}	[mm]	65	75	95	115	115			
Steel failure without lev	er arm					L					
	R30	$V_{Rk,s,fi}$	[kN]	0,64	1,34	1,99	2,68	4,02			
Chanastanistis nasistanas	R60	$V_{Rk,s,fi}$	[kN]	0,55	1,01	1,49	2,01	3,02			
Characteristic resistance	R90	$V_{Rk,s,fi}$	[kN]	0,42	0,87	1,29	1,74	2,61			
	R120	V _{Rk,s,fi}	[kN]	0,34	0,67	0,99	1,34	2,01			
Steel failure with lever a	ırm										
	R30	$M^0_{Rk,s,fi}$	[Nm]	0,70	1,86	3,36	5,24	9,65			
Characteristic bending	R60	$M^0_{Rk,s,fi}$	[Nm]	0,61	1,40	2,52	3,93	7,23			
resistance	R90	$M^0_{Rk,s,fi}$	[Nm]	0,47	1,21	2,18	3,40	6,27			
	R120	$M^0_{Rk,s,fi}$	[Nm]	0,37	0,93	1,68	2,62	4,82			
Concrete pry-out failure											
R30 to R120		k	[-]	1	1	2	2	2			
Concrete edge failure											
	R30	V ⁰ _{Rk,c,fi}	[kN]								
	R60	V ⁰ _{Rk,c,fi}	[kN]			$0,25 \cdot V^{0}_{Rk,c}{}^{1)}$					
	R90	V ⁰ _{Rk,c,fi}	[kN]								
	R120	V ⁰ _{Rk,c,fi}	[kN]			$0,20 \cdot V^{0}_{Rk,c}{}^{1)}$					