EUROPEAN TECHNICAL ASSESSMENT

Scell-it[®]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0064 of 14 July 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Scell-It Injection System X-MAX for concrete

Bonded Anchor with Anchor rod for use in non-cracked concrete

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

Scell-It Plant 1, Germany

23 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

Page 2 of 23 | 14 July 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 23 | 14 July 2014

Specific Part

1 Technical description of the product

The "Scell-It Injection system X-MAX for concrete" is a bonded anchor consisting of a cartridge with injection mortar X-MAX and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See Annex C 1 / C 3 / C 5 / C 7
Characteristic resistance for shear loads	See Annex C 2 / C 4 / C 6 / C 8
Displacements under tension and shear loads	See Annex C 9 / C 10

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	No performance determined (NPD		

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Page 4 of 23 | 14 July 2014

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

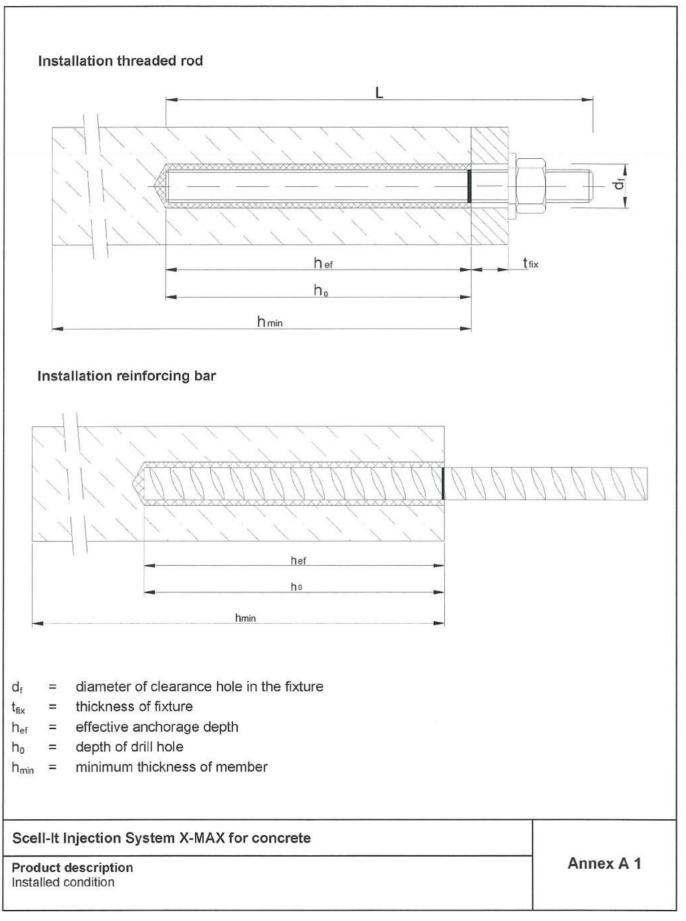
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	-	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 14 July 2014 by Deutsches Institut für Bautechnik

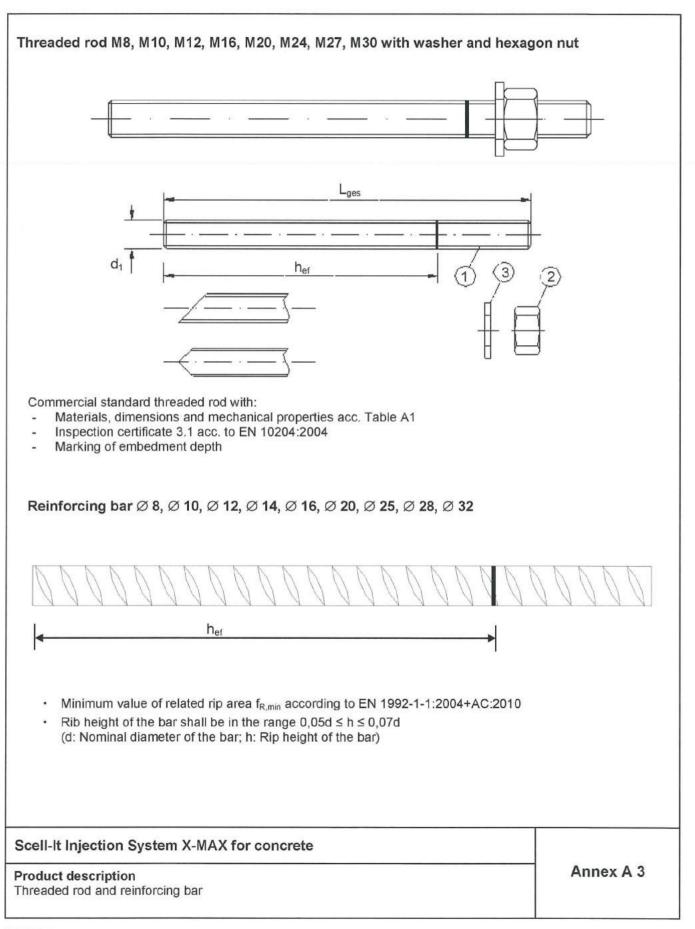
Uwe Bender Head of Department Beglaubigt: Baderschneider

Page 5 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Page 6 of European Technical Assessment ETA-14/0064 of 14 July 2014


English translation prepared by DIBt

Cartridge: X-MAX 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial) Imprint: X-MAX, processing notes, charge-code, shelf life, hazardcode, curing- and processing time (depending on the Sealing/Screw cap temperature), with as well as without travel scale 235 ml, 345 ml and 825 ml cartridge (Type: "side-by-side") Sealing/Screw cap Imprint: X-MAX. processing notes, charge-code, shelf life, hazardcode, curing- and processing time (depending on the temperature), with as well as without travel scale 165 ml and 300 ml cartridge (Type: "foil tube") Imprint: X-MAX, processing notes, charge-code, shelf life, hazard-code, Sealing/Screw cap curing- and processing time (depending on the temperature), with as well as without travel scale Static Mixer Scell-It Injection System X-MAX for concrete Annex A 2 **Product description** Injection system

Page 7 of European Technical Assessment ETA-14/0064 of 14 July 2014

Page 8 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Г

1

Part		Material	
	, zinc plated ≥ 5 μm acc. to EN ISO 4042:15 , hot-dip galvanised ≥ 40 μm acc. to EN IS		C:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:200 Property class 4.6, 5.8, 8.8, EN 1993-1-8	1
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012, SO 898-2:2012,
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised	
Stain	less steel		
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506-	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	088:2005, od) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	
ligh	corrosion resistance steel		
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506-	1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:20 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro	05, d) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	
Reinf	orcing bars		
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	1992-1-1/NA:2013
Scel	I-It Injection System X-MAX for concre	əte	

Page 9 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- · Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- · Hole drilling by hammer or compressed air drill mode.
- · Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Scell-It Injection System X-MAX for concrete

Intended Use

Specifications

Page 10 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Γ

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d _o [mm] =	n]= 10 12 14			18	24	28	32	35
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10 20 40			80	120	160	180	200
Thickness of future	t _{fix,min} [mm] >	> 0							
Thickness of fixture	t _{fix,max} [mm] <			1500					
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm			h _{ef} + 2d ₀				
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40				100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o [mm] =	12	14	16	18	20	24	32	35	40
Effective encharges depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Scell-It Injection System X-MAX for concrete

Intended Use Installation parameters Annex B 2

Page 11 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Steel brush

Table B3: Parameter cleaning and setting tools

Threaded Rod	Rebar	d₀ Drill bit - Ø	d _b Brush - ∅	d _{b,min} min. Brush - ∅	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Piston plug for overhead or horizontal installation Drill bit diameter (d_0): 24 mm to 40 mm

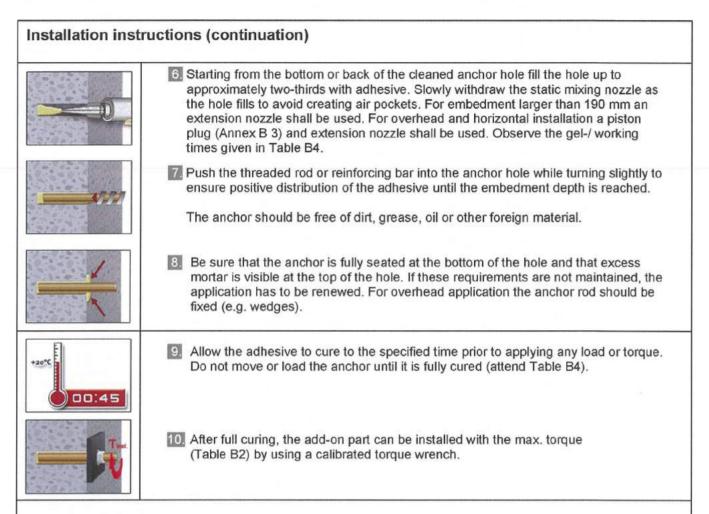
Scell-It Injection System X-MAX for concrete

Intended Use

Cleaning and setting tools

Annex B 3

Page 12 of European Technical Assessment ETA-14/0064 of 14 July 2014



 Drill with hammer drill a hole into the base material to the size depth required by the selected anchor (Table B1 or Table B2) drill hole: the drill hole shall be filled with mortar Attention! Standing water in the bore hole must be removed in the bore hole ground is not reached an extension shall be used. Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a methe bore hole ground is not reached an extension shall be used. The hand-pump Can be used for anchor sizes up to bore hole. For bore holes larger than 20 mm or deeper 240 mm, compremust be used. Check brush diameter (Table B3) and attach the brush to a d or a battery screwdriver. Brush the hole with an appropriate s > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush shall be used (Table B3). Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of deeper 240 mm, compresent aix Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. After cleaning, the bore hole has to be protected against an appropriate way, until dispensing the mortar in the bor hole the cleaning repeated has to be directly before use. For every working interruption longer than the recommended correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	 In case of aborted In case of aborted red before cleaning. Ile clean with inimum of four times. If idiameter 20 mm. essed air (min. 6 bar) rilling machine ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
 Starting from the bottom or back of the bore hole, blow the hole compressed air (min. 6 bar) or a hand pump (Annex B 3) a m the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole. For bore holes larger than 20 mm or deeper 240 mm, compresed. Check brush diameter (Table B3) and attach the brush to a d or a battery screwdriver. Brush the hole with an appropriate s > d_{0,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush shall be used (Table B3). Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compresed at many be used. After cleaning, the bore hole has to be protected against an appropriate way, until dispensing the mortar in the bor the cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole against an appropriate way, until dispensing the mortar in the bor the cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole against an appropriate way, until dispensing the mortar in the bor the cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole again. 	le clean with inimum of four times. If ed. diameter 20 mm. essed air (min. 6 bar) rilling machine ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
 compressed air (min. 6 bar) or a hand pump (Annex B 3) a m the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compremust be used. Check brush diameter (Table B3) and attach the brush to a do or a battery screwdriver. Brush the hole with an appropriate s > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush shall be used (Table B3). Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compressed at (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. After cleaning, the bore hole has to be protected against an appropriate way, until dispensing the mortar in the bot the cleaning repeated has to be directly before dispensing in-flowing water must not contaminate the bore hole aga Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	inimum of four times. If ed. diameter 20 mm. essed air (min. 6 bar) rilling machine ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
Image: Second state of the second s	essed air (min. 6 bar) rilling machine ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
 must be used. Check brush diameter (Table B3) and attach the brush to a do or a battery screwdriver. Brush the hole with an appropriate s > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush shall be used (Table B3). Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compresent an appropriate way, until dispensing the mortar in the both the cleaning repeated has to be directly before dispensing in-flowing water must not contaminate the bore hole again for correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	rilling machine ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
 or a battery screwdriver. Brush the hole with an appropriate s > d_{b,min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush shall be used (Table B3). Finally blow the hole clean again with compressed air (min. 6 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compremust be used. After cleaning, the bore hole has to be protected against an appropriate way, until dispensing the mortar in the bot the cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole against correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	ized wire brush extension bar) or a hand pump is not reached an diameter 20 mm.
 (Annex B 3) a minimum of four times. If the bore hole ground extension shall be used. The hand-pump can be used for anchor sizes up to bore hole For bore holes larger than 20 mm or deeper 240 mm, compremust be used. After cleaning, the bore hole has to be protected against an appropriate way, until dispensing the mortar in the bothe cleaning repeated has to be directly before dispensing in-flowing water must not contaminate the bore hole against correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	is not reached an diameter 20 mm.
 an appropriate way, until dispensing the mortar in the bothe cleaning repeated has to be directly before dispension In-flowing water must not contaminate the bore hole again Attach a supplied static-mixing nozzle to the cartridge and load correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended 	
Correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended	re hole. If necessary, g the mortar.
(Table B4) as well as for new cartridges, a new static-mixer s	working time
Prior to inserting the anchor rod into the filled bore hole, the period between the	osition of the
 Frior to dispensing into the anchor hole, squeeze out separate full strokes and discard non-uniformly mixed adhesive comport shows a consistent grey colour. For foil tube cartridges is must minimum of six full strokes. 	nents until the mortar
cell-It Injection System X-MAX for concrete	
ntended Use Installation instructions	Annex B 4

Page 13 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
\geq -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
≥ 0 °C	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ +10 °C	15 min	80 min
≥ + 20 °C	6 min	45 min
≥ + 30 °C	4 min	25 min
≥ +35 °C	2 min	20 min
≥ + 40 °C	1,5 min	15 min

Scell-It Injection System X-MAX for concrete

Intended Use

Installation instructions (continuation) Curing time Annex B 5

Page 14 of European Technical Assessment ETA-14/0064 of 14 July 2014

Anchor size threaded ro	d			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											1
Characteristic tension resi Steel, property class 4.6	istance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resi Steel, property class 5.8	istance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resi Steel, property class 8.8	istance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resi Stainless steel A4 and HC property class 50 (>M24)	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and o											
Characteristic bond resist	ance in non-cracked con	crete C20/	25								
Temperature range I:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	$\tau_{\rm Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	τ _{Rk.ucr}	[N/mm²]	4,0	5,0	5,0	5,0		not adr	nissible	
	*:	C30/37	×			04					
Increasing factors for concrete ψ_c		C40/50					08				
		C50/60					1,	10			
Splitting failure		0									
Edge distance		C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2,5 - \frac{1}{h}\right)$				$(5 - \frac{h}{h_{ef}}) \le 2,4 \cdot h_{ef}$			
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
nstall safety factor (dry ar	nd wet concrete)	γ2		1,0				1,2			
install safety factor (floode	ed bore hole)	γ2			1	,4			not adr	nissible	

Page 15 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm			V							
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (≻M24) and 70 (≤ M24)	V _{Rk,s}	[KN]	13	20	30	55	86	124	115	140
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]				2	,0			
Installation safety factor	γ2		1,0							
Concrete edge failure										
Installation safety factor	γ ₂					1	.0			

Scell-It Injection System X-MAX for concrete	
Performances Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to TR 029 or TR 045)	Annex C 2

Т

Page 16 of European Technical Assessment ETA-14/0064 of 14 July 2014

Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resi	stance	N _{Rk,s}	[kN]					$A_{s}\boldsymbol{\cdot}f_{uk}$				
Combined pull-out and o	concrete cone failure											
Characteristic bond resista	ance in uncracked conc	rete C20/25	5									
Temperature range I:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	TRk,ucr	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not ad	missible	
Temperature range II:	dry and wet concrete	TRK,ucr	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5		not ad	missible	
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not ad	missible	
		C30/37						1,04				
Increasing factors for conc _{We}	crete	C40/50						1,08				
чс		C50/60						1,10				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]		1	,0 · h _{ef}	≤2·h _e	f (2,5 -	$\left(\frac{h}{h_{ef}}\right) \le$	2,4 · h.	ef	
Axial distance		S _{cr,sp}	[mm]					2 c _{or,sp}				
Installation safety factor (d	ry and wet concrete)	γ2		1,0				1	,2			
Installation safety factor (fl	ooded bore hole)	Y2				1,4				not ad	missible	

Scell-It Injection System X-MAX for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 3

Page 17 of European Technical Assessment ETA-14/0064 of 14 July 2014

Table C4: Characterist									s in n	on-	
cracked con	crete (D	esign ac	cordi	ng to	TR 02	9 or 1	'R 04	5)			
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm									10		
Characteristic shear resistance	V _{Rk,s}	[KN]				0,	50 • A _s •	f _{uk}			
Steel failure with lever arm	Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]				1.	2 · W _{el} ·	f _{uk}			
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	[-]					2,0				
Installation safety factor	γ2	2					1,0				
Concrete edge failure											
Installation safety factor	γ2						1,0				
Scell-It Injection System X-	MAX for	concrete							A		4
Performances Characteristic values of resistance f according to TR 029 or TR 045)	for rebar un	ider shear lo	ads in n	on-crac	ked con	crete, (D	esign)		Ann	iex C	4

Page 18 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Anchor size threaded roo	b l			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	stance,	N _{Rk.s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8	stance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis Steel, property class 8.8		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HC property class 50 (>M24) a	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and c	oncrete failure						1.				
Characteristic bond resista	nce in non-cracked concrete	e C20/25									
Temperature range I:	dry and wet concrete	T _{Rk.ucr}	[N/mm²]	10	12	12	12	12	11	10	9
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	TRk.ucr	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5		not adr	nissible	
Temperature range III:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0
120°C/72°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0		not adı	nissible	24
		C30/37					1,	04			
Increasing factors for conc _{Wc}	rete	C40/50					1,	08			
		C50/60					1,	10			
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]				10	0,1			
Concrete cone failure											
Factor according to CEN/TS 1992-4-5 Section	6231	k _{uar}	[-]				10	0,1			
Edge distance		C _{or,N}	[mm]				1,5	i h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Splitting failure											
Edge distance		C _{cr.sp}	[mm]		1	l,0 · h _{ef} ≤	$2 \cdot h_{ef} (2,$	$5 - \frac{h}{h_{ef}}$	≤ 2,4 · h	ef	
Axial distance		S _{cr,sp}	[mm]					cr.sp			
Installation safety factor (di	ry and wet concrete)	γ2		1,0				1,2			
Installation safety factor (flo	ooded bore hole)	γ2			1	.4			not adr	missible	

Scell-It Injection System X-MAX for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

Annex C 5

Page 19 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk.s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,8				
Steel failure with lever arm	1									
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k₃					2,0				
Installation safety factor	Y2					1,0				
Concrete edge failure ³⁾		1								
Effective length of anchor	If	[mm]		101-11-11-11	I _f =	min(h _{ef} ; 8	3 d _{nom})			
Outside diameter of anchor	dnom	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γ ₂			_		1.0			-	

Scell-It Injection System X-MAX for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)

Annex C 6

Page 20 of European Technical Assessment ETA-14/0064 of 14 July 2014

Anchor size reinforcing b	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 3
Steel failure				10 		1				0.		
Characteristic tension resis	stance	N _{Rk.s}	[kN]					A₅ • f _{uk}				
Combined pull-out and c	oncrete failure	2										
Characteristic bond resista	nce in non-cracked concre	ete C20/25	5								0	
Temperature range I:	dry and wet concrete	T _{Rk.ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not ad	nissible	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	- 5,5	6,5	6,5	6,5	6,5		not adı	nissible	
Temperature range III:	dry and wet concrete	τ _{Rk.ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not adı	nissible	
	0/4 . 23	C30/37						1,04				
ncreasing factors for conci Vc	rete	C40/50						1,08				
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section (6.2.3.1	Kucr	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]			1,0 · h,	_{ef} ≤ 2 · h,	ef (2,5	$\left(\frac{h}{h_{ef}}\right) \le 2$	4 ∙ h _{ef}		
Axial distance		S _{cr.sp}	[mm]					$2 c_{\rm cr,sp}$				
nstallation safety factor (dr	y and wet concrete)	γ2		1.0				1	2			
nstallation safety factor (flo	ooded bore hole)	γ2				1,4				not adı	nissible	
	System X-MAX for	concr	ete									

Page 21 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Table C8: Characteristic values of resistance for rebar under shear loads in noncracked concrete (Design according to CEN/TS 1992-4 or TR 045) Ø 10 Anchor size reinforcing bar Ø8 Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 32 Ø 28 Steel failure without lever arm Characteristic shear resistance [kN] 0,50 · As · fuk V_{Rk.s} Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1 k₂ 0,8 Steel failure with lever arm Characteristic bending moment [Nm] M⁰_{Rk,s} 1.2 • W_{el} • f_{uk} Concrete pry-out failure Factor in equation (27) of CEN/TS 1992-4-5 k₃ 2.0 Section 6.3.3 Installation safety factor 1.0 72 Concrete edge failure Effective length of anchor l_f [mm] $I_f = min(h_{ef}; 8 d_{nom})$ d_{nom} Outside diameter of anchor [mm] 8 10 12 20 24 14 16 27 30 Installation safety factor 1.0 72

Scell-It Injection System X-MAX for concrete	
Performances Characteristic values of resistance for rebar under shear loads in non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)	Annex C 8

Page 22 of European Technical Assessment ETA-14/0064 of 14 July 2014

Table C9: Di										
Anchor size thread	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked conc	rete C20/25									
Temperature range I:	δ _{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,07
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
80°C/50°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Temperature range III:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119
120°C/72°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172
Table C10: Dis		nts under shear	· load ¹⁾ (1 8	hread M 10	ed rod M 12) M 16	M 20	M24	M 27	M 30
	led rod		-1			-	M 20	M24	M 27	M 30
Anchor size thread For non-cracked co All temperature	led rod		-1			-	M 20	M24	0,03	M 30
Anchor size thread For non-cracked co All temperature ranges	ied rod oncrete C20 δ _{V0} -factor δ _{V∞} -factor)/25 [mm/(kN)] [mm/(kN)]	M 8	M 10	M 12	M 16				
Anchor size thread For non-cracked co All temperature	led rod oncrete C20 δ_{V0} -factor $\delta_{V\omega}$ -factor e displacement V;)/25 [mm/(kN)] [mm/(kN)]	M 8	M 10 0,06	M 12	M 16	0,04	0,03	0,03	0,03

Page 23 of European Technical Assessment ETA-14/0064 of 14 July 2014

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Anchor size reinf	orcing bar		Ø 8	Ø 10	Ø 1 2	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked con	crete C20/	25		57 - ES							
Temperature range I:	δ _{N0} -factor	[mm/(N/mm ²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,05
40°C/24°C	δ _{N∞} -factor	[mm/(N/mm ²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,07
Temperature range II:	δ _{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
80°C/50°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
Temperature range III:	δ_{NO} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,12
120°C/72°C	$\delta_{\text{N}\infty}\text{-factor}$	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,18
$\delta_{N\infty} = \delta_{N\infty}$ -factor Table C12: D		nent under s	hear Ic	oad ¹⁾ (r	ebar)		1	1	1		
Anchor size reinfo	orcing bar	D	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25							- 16 C		
All temperature	δ_{VO} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
ranges	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

EUROPEAN TECHNICAL ASSESSMENT

Scell-it[®]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

of 27 June 2014

ETA-14/0065

Deutsches Institut für Bautechnik

Scell-It Injection system X-MAX for rebar connection

Post-installed rebar connection with Scell-It Injection System X-MAX

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

Scell-It Plant 1, Germany

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

Page 2 of 15 | 27 June 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "Scell-It Injection System X-MAX for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 25 mm and injection mortar X-MAX are used for rebar connections. The reinforcing bar is placed into a drilled hole filled with injection mortar and is anchored via the bond between embedded element, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Design values of the ultimate bond resistance	See Annex C 1

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Rebar connections satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Page 4 of 15 | 27 June 2014

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Dcoument

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 27 June 2014 by Deutsches Institut für Bautechnik

Dr.-Ing Karsten Kathage Vice-President *Beglaubigt:* Baderschneider

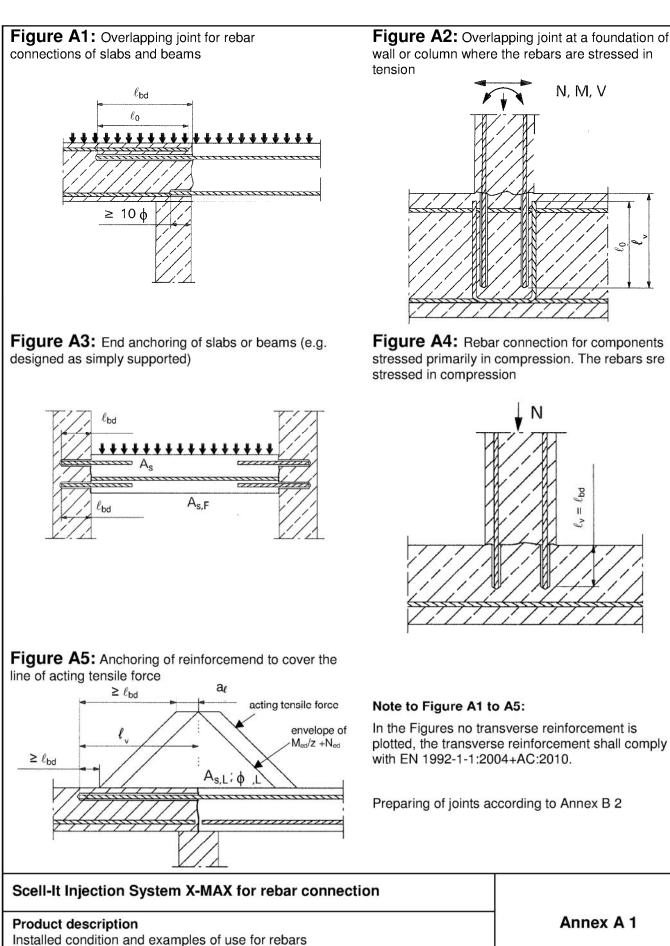


Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

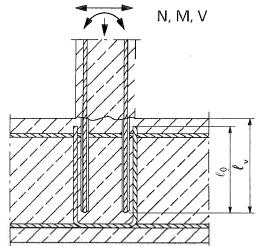
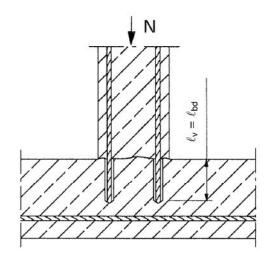



Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Annex A 1

Page 6 of European Technical Assessment ETA-14/0065 of 27 June 2014

Scell-It Injection System X-MAX:					
Injection mortar: X-MAX Typ "coaxial": 150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml Kartusche	hazard-code	notes, charge-code, shelf life, , curing- and processing time on the temperature), with as well as			
Type "side-by-side": 235 ml, 345 ml and 825 ml cartridge	hazard-code	notes, charge-code, shelf life, e, curing- and processing time on the temperature), with as well as			
Static Mixer					
CRW 14W					
TAH 18W	TAH 18W $\square (f - f + f - f -$				
Piston plug and mixer extension					
Reinforcing bar (rebar): ø8, ø10, ø12, ø14, ø16, ø20, ø22, ø24, ø25					
 Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010 Rib height of the bar shall be in the range 0,05¢ ≤ h ≤ 0,07¢ (¢: Nominal diameter of the bar; h: Rip height of the bar) Table A1: Materials 					
Designation	Material				
Rebar EN 1992-1-1:2004+AC:2010, Anr		Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$			
Scell-It Injection System X-MAX f	or rebar connection				
Product description Injection mortar / Static mixer / Rebar Materials		Annex A 2			

Specifications of intended use

Anchorages subject to:

• Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C50/60 according to EN 206-1:2000.
- Maximum chloride concrete of 0,40% (CL 0.40) related to the cement content according to EN 206-1:2000.
- · Non-carbonated concrete.

Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of ϕ + 60 mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010.

The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

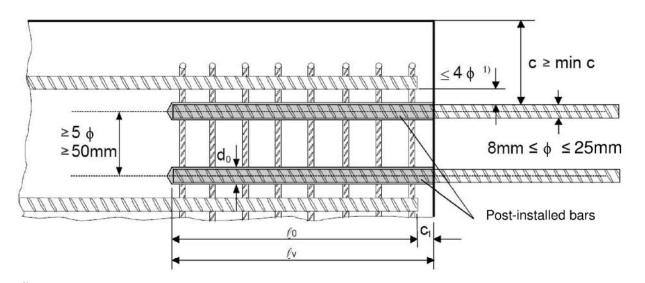
Temperature Range:

• - 40°C to +80°C (max. short term temperature +80°C and max long term temperature +50°C).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010 and Annex B 2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete.
- It must not be installed in flooded holes.
- Hole drilling by hammer drill or compressed air drill mode.
- The installation of post-installed rebar shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

Scell-It Injection System X-MAX for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4\$\overline\$, then the lap length shall be increased by the difference between the clear bar distance and 4\$\overline\$.

The following applies to Figure B1:

- c concrete cover of post-installed rebar
- c₁ concrete cover at end-face of existing rebar
- min c minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2
 diameter of post-installed rebar
- ℓ_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3
- ℓ_v effective embedment depth, $\geq \ell_0 + c_1$
- d₀ nominal drill bit diameter, see Annex B 6

Scell-It Injection System X-MAX for rebar connection

Intended use

General construction rules for post-installed rebars

Annex B 2

Table B1: Minimum concrete cover min c ¹⁾ of post-installed rebar depending of drilling method				Drilling aid
	Drilling method	Bebar diameter	Without drilling aid	With drilling aid

Drilling method	Rebar diameter	without drilling aid	with drilling aid
Hammer drilling (HD)	< 25 mm	$30 \text{ mm} + 0,06 \cdot \ell_{v} \ge 2 \phi$	$30 \text{ mm} + 0,02 \cdot \ell_v \ge 2 \phi$
Hammer unling (HD)	= 25 mm	$40 \text{ mm} + 0,06 \cdot \boldsymbol{\ell}_{v} \geq 2 \phi$	$40 \text{ mm} + 0,02 \cdot \ell_{v} \ge 2 \phi$
Compressed air drilling (CD)	< 25 mm	50 mm + 0,08 · ℓ _v	50 mm + 0,02 · ℓ _v
Compressed air drining (CD)	= 25 mm	60 mm + 0,08 · $\ell_{\rm v}$	60 mm + 0,02 · ℓ_v

see Annexes B2, Figures B1

1)

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed

Table B2: maximum embedment depth $\ell_{v,max}$

Rebar	0	
Øф	$\ell_{v,max}$ [mm]	
8 mm	1000	
10 mm	1000	
12 mm	1200	
14 mm	1400	
16 mm	1600	
20 mm	2000	
22 mm	2000	
24 mm	2000	
25 mm	2000	

Table B3: Base material temperature, gelling time and curing time

Concrete temperature		mperature	Gelling- / working time ¹⁾	Minimum curing time in dry concrete ⁵⁾
			t _{gel}	t _{cure,dry}
-10°C	bis	-6°C	90 min ²⁾	24 h
-5°C	bis	-1°C	90 min ³⁾	14 h
0°C	bis	+4°C	45 min ³⁾	7 h
+5°C	bis	+9°C	25 min ³⁾	2 h
+10°C	bis	+19°C	15 min ³⁾	80 min
+20°C	bis	+24°C	6 min ³⁾	45 min
+25°C	bis	+29°C	4 min ³⁾	25 min
+30°C	bis	+40°C	2,5 min ⁴⁾	15 min

 $\stackrel{1)}{\sim} t_{gel}$: maximum time from starting of mortar injection to completing of rebar setting.

²⁾ Cartridge temperature <u>must</u> be at minimum +15°C

³⁾ Cartridge temperature **must** be between +5°C and +25°C

⁴⁾ Cartridge temperature must be below +20°C

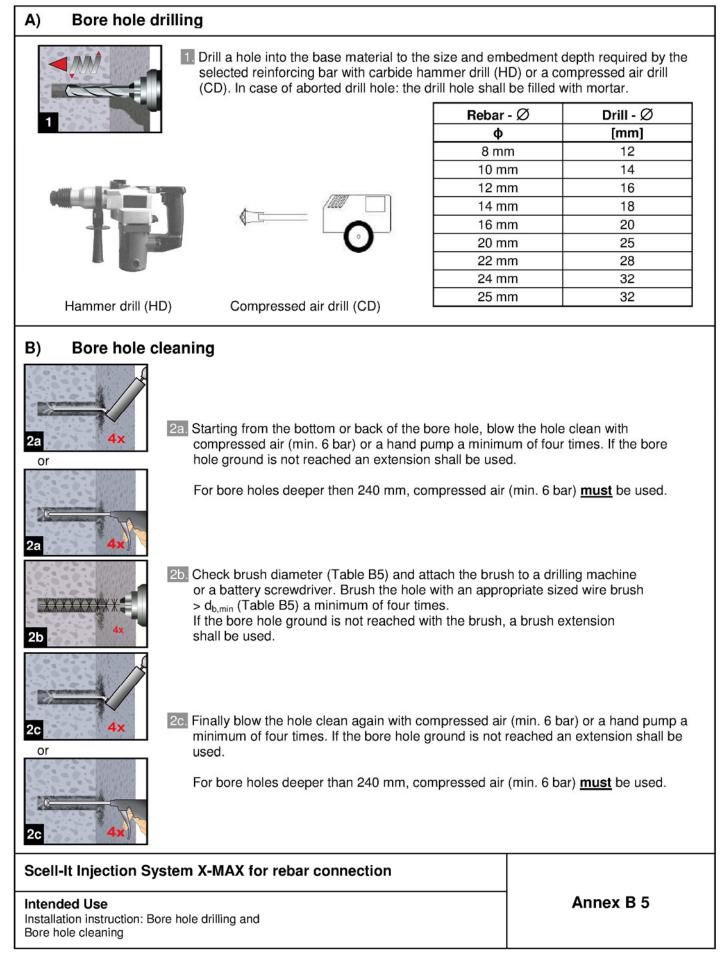
 $^{5)}$ In wet concrete the curing time $t_{\text{cure,dry}}$ has to be doubled up

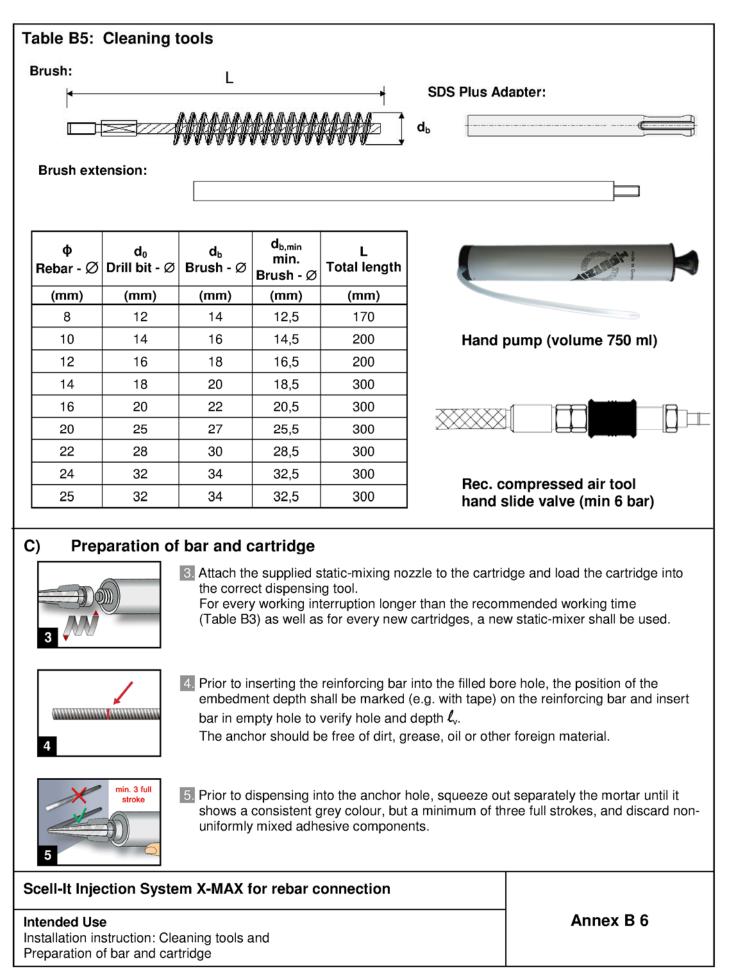
Scell-It Injection System X-MAX for rebar connection

Intended use

Minimum concrete cover Maximum embedment depth / working time and curing times Annex B 3

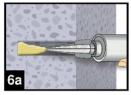
٦

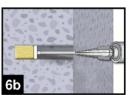



Cartridge type/size	Har	nd tool	Pneumatic tool
Coaxial cartridges 150, 280, 300 up to 333 ml			
	e.g. Type H	297 or H244C	e.g. Type TS 492 X
Coaxial cartridges 380 up to 420 ml		R	
	e.g. Type CCM 380/10	e.g. Type H 285 or H244C	e.g. Type TS 485 LX
Side-by-side cartridges 235, 345 ml		R	
	e.g. Type CBM 330A	e.g. Type H 260	e.g. Type TS 477 LX
Side-by-side cartridge 825 ml	-	-	
			e.g. Type TS 498X

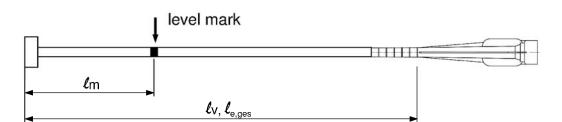
All cartridges could also be extruded by a battery tool.

Scell-It Injection System X-MAX for rebar connection	
Intended Use Dispensing tools	Annex B 4





D) Filling the bore hole


6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used.

For overhead and horizontal installation and bore holes deeper than 240 mm a piston plug and the appropriate mixer extension must be used.

Observe the gel-/ working times given in Table B3.

Table B6: Piston plugs, max anchorage depth and mixer extension

	Drill		Cartridge: All sizes				Cartridge: side-by-side (825 ml)															
Bar size	bit	bit - Ø		bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	bit - Ø	Piston plug	Hand or b	attery tool	Pneum	atic tool	Pneuma	atic tool
φ	HD	PD	- 62	l _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension													
(mm)	(m	m)	No.	(cm)		(cm)		(cm)														
8	12	-	-			80		80														
10	14	-	#14					100	VL 10/0,75													
12	1	6	#16 #18	70		100	100	120														
14	1	8					100		140													
16	2	0	#20		VL 10/0,75	75	VL 10/0,75	160														
20	25	26	#25			70			VL 16/1,8													
22	2	8	#28	50		70		000														
24	3	2	#32	50				200														
25	3	2	#32		50																	

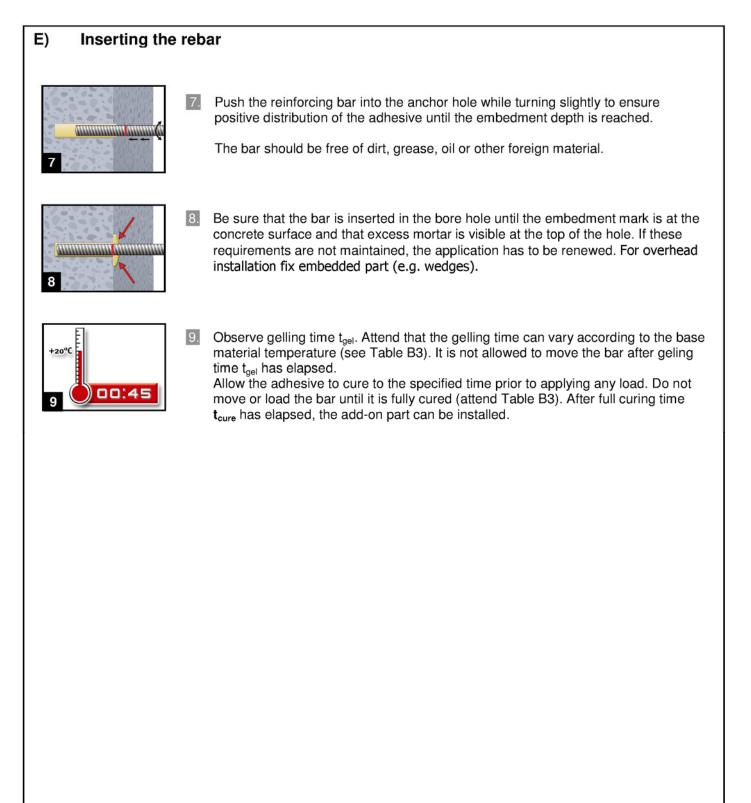
Injection tool must be marked by mortar level mark ℓ_m and anchorage depth ℓ_v resp. $\ell_{e,ges}$ with tape or marker. Quick estimation: $\ell_m = 1/3 \cdot \ell_v$

Continue injection until the mortar level mark $\ell_{\rm m}$ becomes visible.

Optimum mortar volume:
$$\ell_{\rm m} = \ell_{\rm v} \operatorname{resp.} \ell_{\rm e,ges} \cdot \left(1, 2 \cdot \frac{\varphi^2}{d_0^2} - 0, 2 \right)$$
 [mm]

Scell-It Injection System X-MAX for rebar connection

Intended Use


Installation instruction: Filling the bore hole

Annex B 7

Page 14 of European Technical Assessment ETA-14/0065 of 27 June 2014

English translation prepared by DIBt

Scell-It Injection System X-MAX for rebar connection

Intended Use Installation instruction: Inserting rebar Annex B 8

Minimum anchorage length and minimum lap length

The minimum anchorage length $\ell_{b,min}$ and the minimum lap length $\ell_{0,min}$ according to EN 1992-1-1:2004+AC:2010 $\ell_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $\ell_{0,min}$ acc. to Eq. 8.11) shall be multiply by a factor according to Table C1.

Table C1: Factor related to concrete class and drilling method

Concrete class	Drilling method	Factor
C12/15 to C50/60	Hammer drilling and compressed air drilling	1,0

Table C2: Design values of the ultimate bond resistance f_{bd} in N/mm² for all drilling methods for good conditions

according to EN 1992-1-1:2004+AC:2010 for good bond conditions (for all other bond conditions multiply the values by 0.7)

Rebar - Ø	Concrete class								
φ	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 to 25 mm	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Scell-It Injection System X-MAX for rebar connection

Performances

Minimum anchorage length and minimum lap length Design values of ultimate bond resistance $\rm f_{bd}$

EUROPEAN TECHNICAL ASSESSMENT

Scell-it[®]

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0066 of 22 September 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Scell-It Injection system X-MAX for masonry

Injection system for use in masonry

SCELL-IT 28 Rue Paul Dubrule 59854 LESQUIN FRANKREICH

Scell-It Plant 1, Germany

17 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal Injection Anchors for Use in Masonry", ETAG 029, April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-14/0066

Page 2 of 17 | 22 September 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The Scell-It Injection system X-MAX for masonry is a bonded anchor (injection type) consisting of a mortar cartridge with injection mortar X-MAX, a perforated sleeve and an anchor rod with hexagon nut and washer in the range of M8 to M12. The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry and mechanical interlock. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1
Characteristic resistance for bending moments	See Annex C 2
Displacements under shear and tension loads	See Annex C 2
Reduction Factor for job site tests (β -Factor)	See Annex C 2
Edge distances and spacings	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-14/0066

Page 4 of 17 | 22 September 2014

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

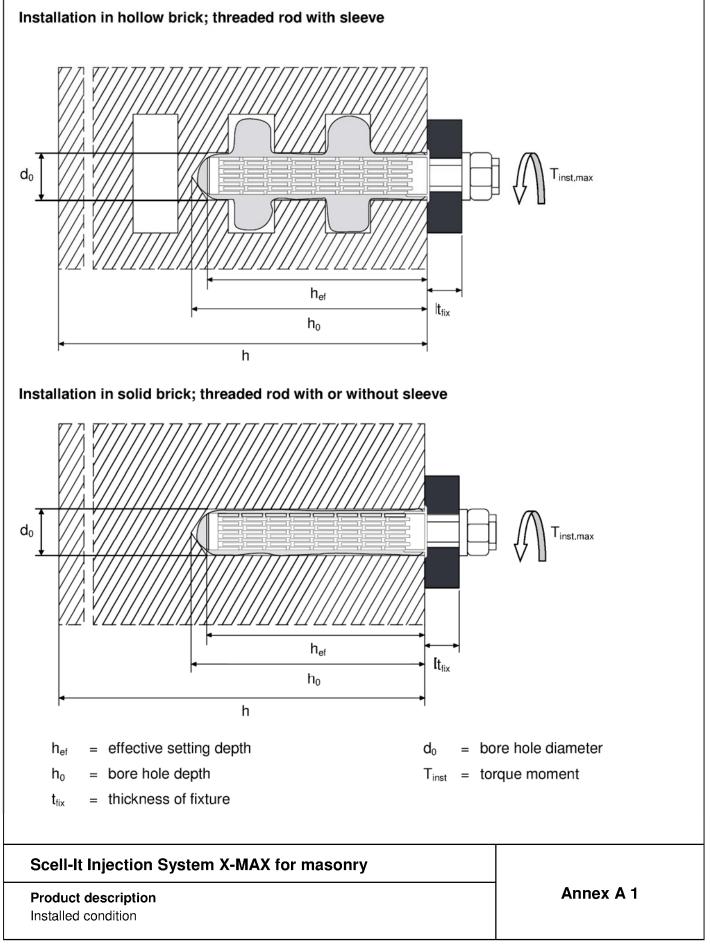
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

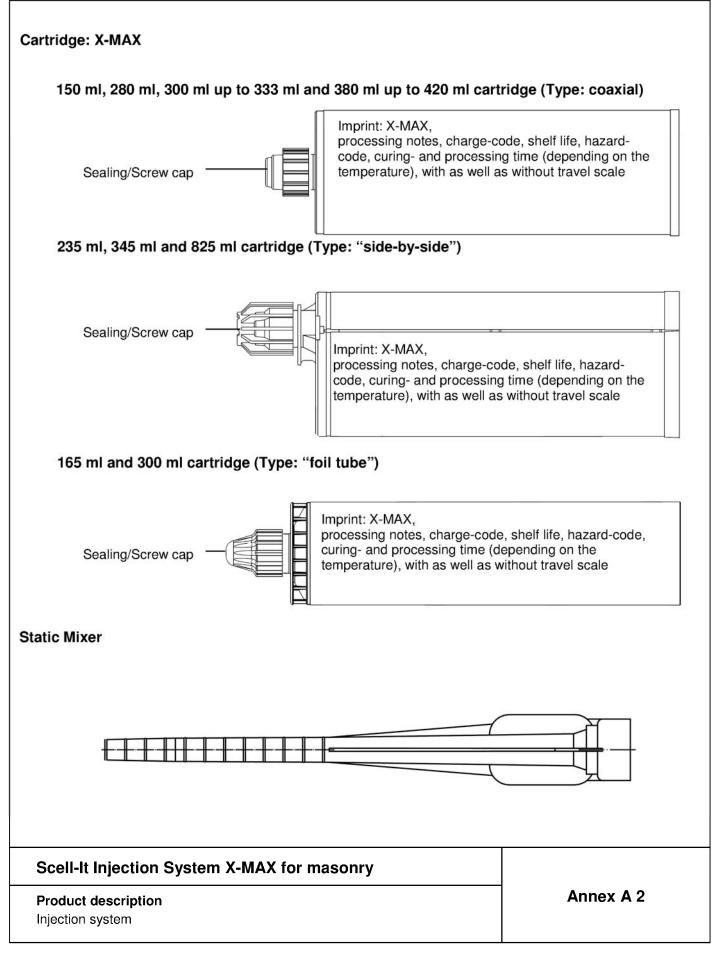
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 17 February 1997 (97/177/EC) (OJ L 073 of 14.03.97 p. 24-25), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

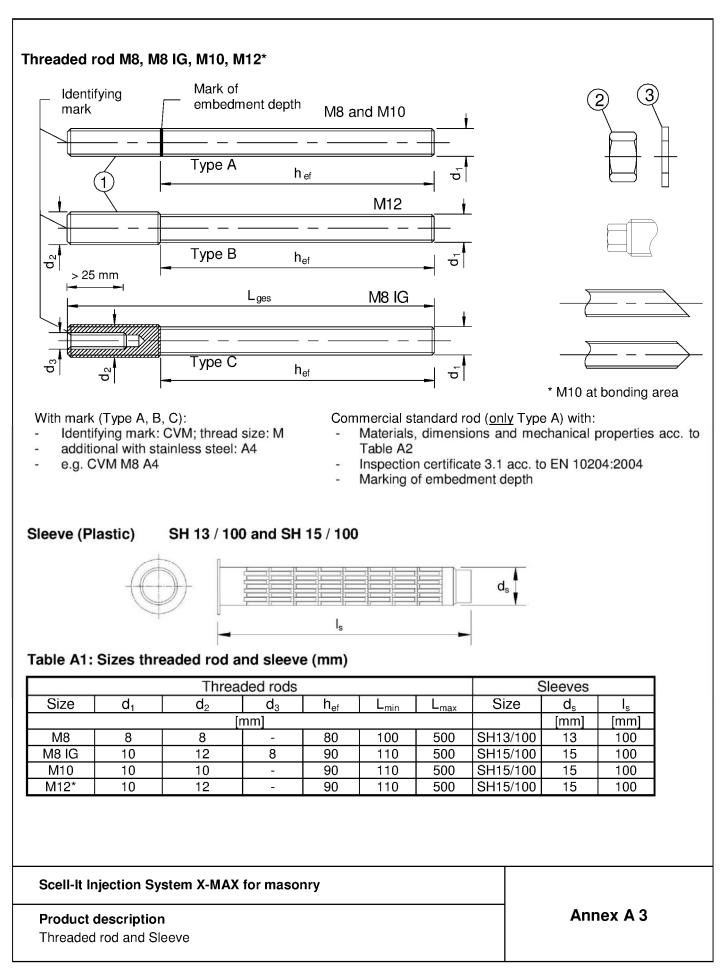
Product	Intended use	Level or class	System
Metal injection anchors for use in masonry	For fixing and/or supporting to masonry, structural elements (which contributes to the stability of the works) or heavy units	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 22 September 2014 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider



Page 7 of European Technical Assessment ETA-14/0066 of 22 September 2014

Part	Designation	Material				
Steel, zinc plated ≥ 5 μm acc. to EN ISO 4042:1999 or Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009						
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Strength class 5.8, 8.8 EN 1993-1-8:2005+AC:2009 $f_{uk} = f_{ub}$ $f_{yk} = f_{yb}$				
2	Hexagon nut, EN ISO 4032:2012	Strength class 5 (for class 5.8 rod) EN ISO 898-2:2012 Strength class 8 (for class 8.8 rod) EN ISO 898-2:2012				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised				
Stair	nless steel					
1	Anchor rod	$ \begin{array}{ll} \mbox{Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005,} \\ \mbox{Strength class 70 EN ISO 3506-1:2009} \\ \mbox{f}_{uk} = \mbox{R}_{m,min} & \mbox{f}_{yk} = \mbox{R}_{p0,2,min} \end{array} $				
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088-1:2005, Strength class 70 (for class 70 rod) EN ISO 3506-2:2009				
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000, or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005				

Scell-It Injection	System	X-MAX	for	masonry
--------------------	--------	-------	-----	---------

Product description

Materials

Annex A 4

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads

Base materials:

• Solid brick masonry (Use category b), according to Annex B 2.

Note: The characteristic resistance are also valid for larger brick sizes and larger compressive strength of the masonry unit.

- Hollow brick masonry (use category c), according to Annex B 2.
- Mortar strength class of the masonry M2,5 at minimum according to EN 998-2:2010.
- For other bricks in solid masonry and in hollow or perforated masonry, the characteristic resistance of the anchor may be determined by job site tests according to ETAG 029, Annex B under consideration of the β-factor according to Annex C 2, Table C4.

Temperature Range:

- Ta: 40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)
- Tb: 40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C)

Use conditions (Environmental conditions):

- Dry and wet structure (regarding injection mortar).
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

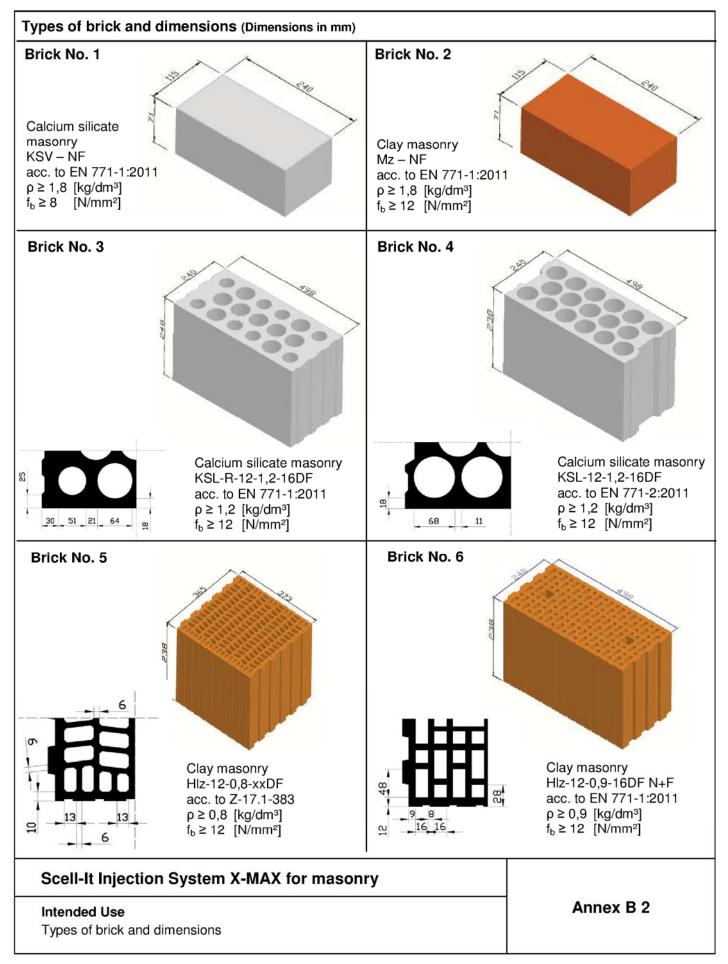
Use categories in respect of installation and use:

- · Category d/d.
- · Category w/w.

Design:

- Verifiable calculation notes and drawings are prepared taking account the relevant masonry in the region of the anchorage, the loads to be transmitted and their transmission to the supports of the structure. The position of the anchor is indicated on the design drawings.
- The anchorages are designed in accordance with the ETAG 029, Annex C, Design method A under the responsibility of an engineer experienced in anchorages and masonry work.

Installation:


- Dry or wet structures.
- Hole drilling by rotary drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Scell-It Injection System X-MAX for masonry

Intended Use

Specifications

Installation

Cleaning Brush

Table B1: Installation parameters in solid masonry (without sleeve)

Threaded rod			M8	M8 IG	M10	M12
Nominal drill hole diameter	d ₀	[mm]	10	12	12	12
Embedment depth	h _{ef}	[mm]	80	90	90	90
Bore hole depth	h ₀	[mm]	85	95	95	95
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	14	12	14
Diameter of nylon brush	d _b ≥	[mm]		2	0	
Torque moment T		[Nm]		2	2	

Table B2: Installation parameters in solid and hollow masonry (with sleeve)

Threaded rod			M8	M8 IG	M10	M12
Sleeve			SH 13x100	SH 15x100	SH 15x100	SH 15x100
Nominal drill hole diameter	d ₀	[mm]	14	16	16	16
Embedment depth sleeve	h _{nom}	[mm]	100	100	100	100
Embedment depth rod	h _{ef}	[mm]	80	90	90	90
Bore hole depth	h ₀	[mm]	105	105	105	105
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	14	12	14
Diameter of nylon brush	d _b ≥	[mm]		2	0	
Torque moment	T _{inst}	[Nm]			2	

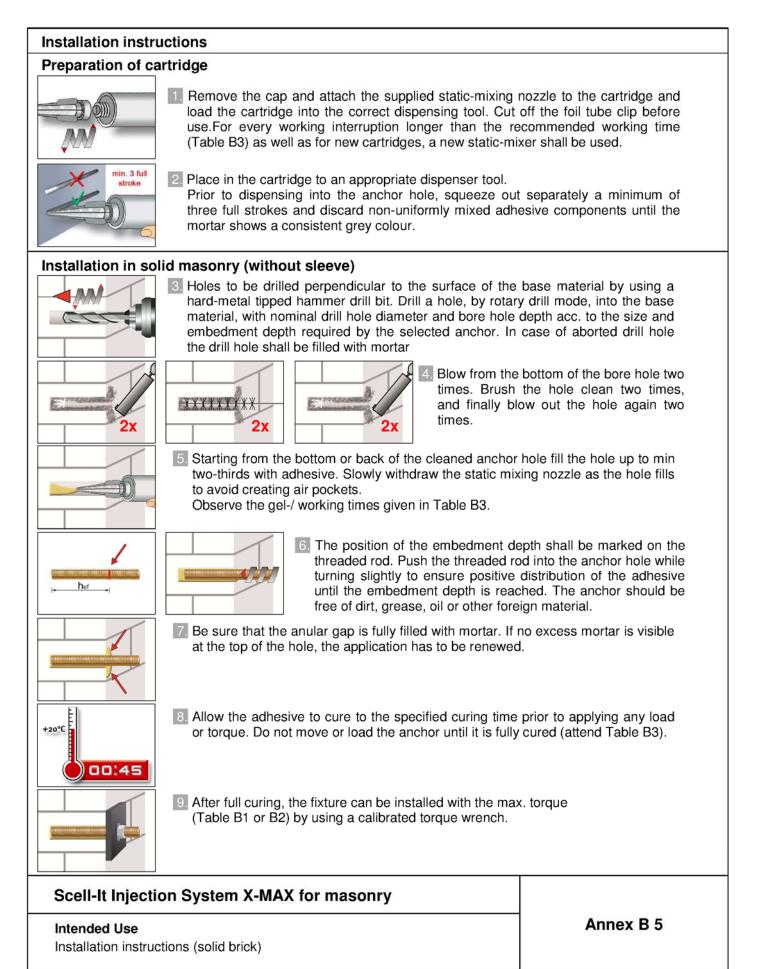
Table B3: Minimum curing time

Base material temperature	Gelling- / working time	Minimum curing time in dry base material ¹⁾
+ 5 °C to +9 °C	25 min	2 h
+ 10 °C to +19 °C	15 min	80 min
+ 20 °C to +29 °C	6 min	45 min
+ 30 °C to +34 °C	4 min	25 min
+ 35 °C to +40 °C	2 min	20 min

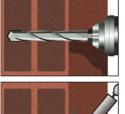
¹⁾ In wet base material the curing time <u>must</u> be doubled

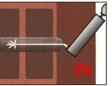
Scell-It Injection System X-MAX for masonry

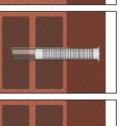
Intended Use


Installation parameters and cleaning brush Gelling and Curing times

Annex B 3


Table B4: Allocation of anchor rods ¹⁾ , sleeves ¹⁾ and bricks						
Bricks	Valid anchor rods and sleeves	* M10 at bonding area				
No.		M8; M8IG; M10; M12* SH 13x100 SH 15x100				
No	2	M8; M8IG; M10; M12* SH 13x100 SH 15x100				
No	3	SH 13x100				
No	4	SH 13x100 SH 15x100				
No	5	SH 13x100 SH 15x100				
No		SH 13x100				
 Other combination can be use af The β-factors for this job side tes 	er job side test acc. to ETAG 029, Annex B. t are given in Table C4					
Scell-It Injection System						
Intended Use Allocation of anchor rods, slee		Annex B 4				

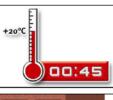



Installation in solid and hollow masonry (with sleeve)

depth required by the selected anchor. In case of aborted drill hole the drill hole shall be filled with mortar XXXXXX

Blow from the bottom of the bore hole two times. Brush the hole clean two times, and finally blow out the hole again two times.

5. Insert the perforated sleeve into the bore hole. Make sure that the sleeve fits well into the hole. Never cut the sleeve! Only use sleeves that have the right length.


3. Holes to be drilled perpendicular to the surface of the base material by using a hardmetal tipped hammer drill bit. Drill a hole, by rotary drill mode, into the base material, with nominal drill hole diameter and bore hole depth acc. to the size and embedment

6. Starting from the bottom or back fill the sleeve completely with adhesive. For quantity of mortar attend cartridge label.

Observe the gel-/ working times given in Table B3.

7. The position of the embedment depth shall be marked on the threaded rod. Push the threaded rod into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Allow the adhesive to cure to the specified curing time prior to applying any load or torgue. Do not move or load the anchor until it is fully cured (attend Table B3).

9. After full curing, the fixture can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Scell-It Injection System X-MAX for masonry

Intended Use

Installation instructions (hollow brick)

Annex B 6

Table	C1: Char	acteristic v	alues of	resistan	ce for t	tension	and s	near loa	ads			
					Characteristic resistance							
	Desity ρ [kg/dm³]			Effective	Use category dry / dry (d/d) wet / wet (w/w)							
	Com-			Embed-		dry / d	ry (d/d) I			wet / we	et (w/w) I	
Briek	pressive		Apobor	ment depth h _{ef}	Ta: 24°	C/40°C	Tb: 50°	C/80°C	Ta: 24°	C/40°C	Tb: 50°	C/80°C
Brick No.	strength f _b [N/mm ²]	Sleeve	Anchor size	[mm]	N _{Rk} ¹⁾	V_{Rk} ^{2,3)}	N _{Rk} ¹⁾	V _{Rk} ^{2,3)}	N _{Rk} ¹⁾	$V_{Rk}^{2,3)}$	N _{Rk} ¹⁾	V _{Rk} ^{2,3)}
						N]		N]		N]		N]
		without	M8	80	4,0	4,0	3,0	3,0	3,0	3,0	2,5	2,5
1	ρ≥1,8	without	M8 IG; M10; M12	90	5,0	5,0	4,5	4,5	4,0	4,0	3,5	3,5
I	f _b ≥8	SH 13x100	M8	80	5,0	5,0	4,5	4,5	4,5	4,5	3,5	3,5
		SH 15x100	M8 IG; M10; M12	90	7,0	7,0	6,0	6,0	5,0	5,0	4,5	4,5
		without	M8	80	4,0	4,0	3,0	3,0	3,5	3,5	3,0	3,0
2	ρ≥1,8	without	M8 IG; M10; M12	90	5,0	5,0	4,5	4,5	5,0	5,0	4,0	4,0
2	f _b ≥ 12	SH 13x100	M8	80	3,5	3,5	3,0	3,0	3,5	3,5	2,5	2,5
		SH 15x100	M8 IG; M10; M12	90	4,5	4,5	3,5	3,5	4,5	4,5	3,5	3,5
3	ρ≥1,2 f _b ≥12	SH 13x100	M8	80	3,5	2,5	3,5	2,5	3,0	2,0	3,0	2,0
		SH 13x100	M8	80	2,5	2,0	2,5	2,0	2,0	1,5	2,0	1,5
	ρ≥1,2 f _b ≥12	SH 15x100	M8 IG; M10; M12	90	3,0	2,5	3,0	2,5	2,0	2,0	2,0	2,0
5	ρ≥0,8 f _b ≥12	SH 13x100	M8	80	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
		SH 15x100	M8 IG; M10; M12	90	2,0	2,5	2,0	2,5	2,0	2,5	2,0	2,5
6	ρ≥0,9 f _b ≥12	SH 13x100	M8	80	3,0	2,0	3,0	2,0	2,5	2,0	2,5	2,0

For design according to ETAG 029, Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,b} = N_{Rk,s}$ For design according to ETAG 029, Annex C: $V_{Rk} = V_{Rk,b} = V_{Rk,s}$ $V_{Rk,c}$ according to ETAG 029, Annex C 1)

2)

3)

Scell-It Injection System X-MAX for masonry

Performances

Z56690.14

Characteristic values of resistance for tension load and shear load values

Annex C 1

8.06.04-49/14

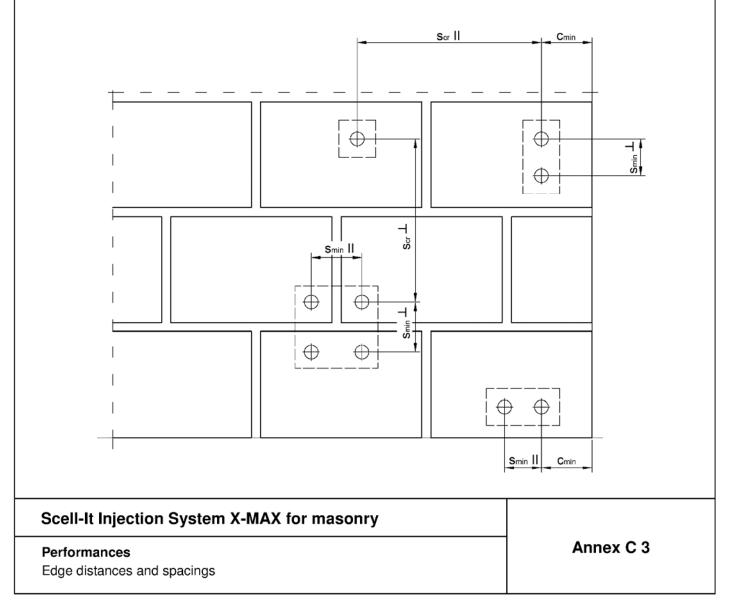
Table C2: Characteristic values of resistance for bending moments								
			M8	M8 IG ¹⁾	M10	M12 ¹⁾		
Characteristic bending moment, Steel, property class 5.8	M _{Rk,s}	[Nm]	19	37	37	37		
Characteristic bending moment, Steel, property class 8.8	M _{Rk,s}	[Nm]	30	60	60	60		
Characteristic bending moment, Stainless steel A4, property class 70	M _{Rk,s}	[Nm]	26	52	52	52		

¹⁾ M10 at bonding area

Table C3: Displacement under shear and tension load

Brick-No.	N [kN]	δ _{N0} [mm]	δ _{N∞} [mm]	V [kN]	δ _{vo} [mm]	δ _{v∞} [mm]
1	N _{Rk} 1,4 x γ _M	0,1	0,2	 1,4 x γ _M	V _{Rk} [kN]	1 5 5
2					2,0 [kN/mm]	1,5 δ _{vo}
3					0,7	
4						1 1
5						1,1
6						

Table C4: β -factors for job site tests according to ETAG 029, Annex B


Brick-No.	Installation & use	β-factor				
		Ta: 24°C / 40°C	Tb: 50°C / 80°C			
1-2	d/d	0,66	0,53			
3-6	d/d	0,92				
1		0,53	0,42			
2		0,61	0,49			
3	w/w (incl. w/d)	0,74				
4	w/w (incl. w/d)	0,74				
5		0,86				
6		0,86				

Scell-It Injection System X-MAX for masonry	
Performances	Annex C 2
Characteristic values of resistance for bending moments,	
Displacements, 8-factors for job site tests	

	Anchor size								
		M8		M8 IG, M10, M12					
Brick No.	C _{min} = C _{cr} [mm]	$S_{min,II} = S_{cr,II}^{1}$ [mm]	S _{min,} ⊥= S _{cr,} ⊥ ²⁾ [mm]	C _{min} = C _{cr} [mm]	$S_{min,II} = S_{cr,II}^{1}$ [mm]	$S_{min,\perp} = S_{cr,\perp}^{2}$ [mm]			
1	120 (150) ³⁾	240 (300) ³⁾	240 (300) ³⁾	135 (150) ³⁾	270 (300) ³⁾	270 (300) ³⁾			
2	120 (150) ³⁾	240 (300) ³⁾	240 (300) ³⁾	135 (150) ³⁾	270 (300) ³⁾	270 (300) ³⁾			
3	100	498	248	100	498	248			
4	100	498	238	100	498	238			
5	100	373	238	100	373	238			
6	100	498	238	100	498	238			

 $^{1)}$ s $_{\rm II}$: Spacing parallel to the bearing joint $^{2)}$ s $_{\rm L}$: Spacing perpendicular to the bearing joint $^{3)}$ with perforated sleeve

