
SCELL-IT HIGH LOAD RESIN

For high load applications.

High Load

Available in 420ml

Description

High Load bonded anchoring system is a Vinylester with very low voc content offering very high performance in both cracked and uncracked concrete, and under seismic conditions (C1). High Load together with its variations is one of the most versatile anchoring systems in our range.

Storage

Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+5°C to +25°C) out of direct sunlight. When stored correctly, the product shelf life will be 12 months from the date of manufacture.

Health & Safety

For health and safety information, please refer to the relevant Safety Data Sheet.

Base Materials	Accessories	Uses/Applications
-Cracked and uncracked concrete	-Applicators	-Canopies
-Solid and hollow masonry	-Mixing nozzles	-Boilers
-Solid rock	-EZ flow mixing nozzle	-Bicycle Racks
-Hard natural stone	-Cleaning blow pump	-Hand Rails
-Voided stone or rock	-Cleaning brushes	-Safety Barriers
	-High flow mixing nozzles	-Balcony Fences
	-Extension tubes	-Racking
	-Resin stoppers	-Machinery
		-Satellite Dishes

Features

- -Suitable for use with close edge distance and small anchor spacings
- -Suitable for dry, wet & flooded holes
- -Reduced drilling diameters, 22mm for M20 and 26mm for M24; results in significant material and labour savings.
- -Variable embedment depths 8d to 20d
- -Available in co-axial cartridges (380; 400; 410; 420ml), side by side cartridges (345; 350; 360; 825ml) and single piston foil pack cartridges (150; 170; 300; 410; 550; 850ml)

Approvals & Tests

- -ETA Option 1 for cracked and uncracked concrete; EAD 330499-01-0601
- -ETA according to EAD 330087-00-0601 (formerly TR023) for post-installed rebar connections
- -ETA for EAD 330076-00-0604, injection anchors for use in masonry
- -WRAS approval for contact with water
- -NSF/ANSI 61 certified for contact with potable water
- -A+ classification according to compulsory French VOC emissions regulation
- -Meets the requirements of LEED v4.1 specifications
- -Approved for 100 years' service life
- -Bond Strength Reduction factor for Post-Installed Rebar connection when exposed to fire

HIGH LOAD - Working & Load	ling Times		
Cartridge Temperature	T Work	Base Material Temperature	T Load
	10 Minutes	5°C to 10°C	145 Minutes
	8 Minutes	10°C to 15°C	85 Minutes
5°C	6 Minutes	15°C to 20°C	75 Minutes
	5 Minutes	20°C to 25°C	50 Minutes
	4 Minutes	25°C to 30°C	40 Minutes

Note: T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest base material temperature in the range.

HIGH LOAD - Working & Loading Times										
Cartridge Temperature	T Work	Base Material Temperature	T Load							
	10 Minutes	0°C to 5°C	75 Minutes							
0°C	5 Minutes	5°C to 20°C	50 Minutes							
	100 seconds	+20°C	20 Minutes							

Note: T Work is typical gel time at highest base material temperature in the range.

 $[\]textit{T} \, \textit{Load} \, \textit{is minimum set time required until load can be applied at the lowest base \, \textit{material temperature in the range}.$

HIGH LOAD - Working & Load	ling Times		
Cartridge Temperature	T Work	Base Material Temperature	T Load
	15 Minutes	15°C to 20°C	5 hours
	10 Minutes	20°C to 25°C	145 Minutes
+15°C	7.5 Minutes	25°C to 30°C	85 Minutes
	5 Minutes	30°C to 35°C	50 Minutes
	3.5 Minutes	35°C to 40°C	40 Minutes

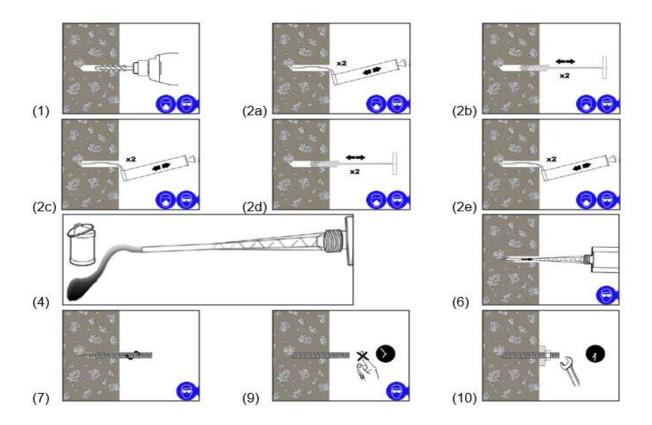
Note: T Work is typical gel time at highest base material temperature in the range.

 $T \, \textit{Load is minimum set time required until load can be applied at the lowest base material temperature in the range.}$

				Physical Properties				
Property		Value	Unit	Test Standard				
Compressive Strength	24 hrs	72.3	N/2	BS6319				
Compressive Strength	7 days	77.8	N/mm ²	B30319				
ensile Strength 24 hrs 13.5		N/mm²	ASTM D 638 @ +20°C					
Tensile Strength	7 days	15.2	IN/IIIIII	ASTINI D 030 @ +20 C				
Elongation at Break	24 hrs	6	%	ASTM D 638 @ +20°C				
Liongation at break	7 days	6.7	/0	ASTINI D 030 @ +20 C				
Tensile Modulus	24 hrs	3.75	GN/m ²	ASTM D 638 @ +20°C				
Terisile Modulus	7 days	3.8	GIV/III	A31NI D 030 @ +20 C				
Flexural Strength	7 days	28.3	N/mm ²	ASTM D 790 @ +20°C				

Chemical Resistance					
Chemical Environment	Concentration	Result	Chemical Environment	Concentration	Result
Aqueous Solution Acetic Acid	10%	С	Hexane	100%	С
Acetone	100%	×		10%	√
Aqueous Solution Aluminium Chloride	Saturated	✓	Hydrochloric Acid	15%	✓
Aqueous Solution Aluminium Nitrate	10%	√		20%	С
Ammonia Solution	5%	×	Hydrogen Sulphide Gas	100%	✓
Jet Fuel	100%	×	Linseed Oil	100%	✓
Benzoic Acid	Saturated	✓	Lubricating Oil	100%	✓
Sodium Hypochlorite Solution	5 - 15%	✓	Mineral Oil	100%	✓
Butyl Alcohol	100%	С	Paraffin / Kerosene (Domestic)	100%	С
Calcium Sulphate Aqueous Solution	Saturated	✓	Phenol Aqueous Solution	1%	×
Carbon Monoxide	Gas	✓	Phosphoric Acid	50%	✓
Carbon Tetrachloride	100%	С	Potassium Hydroxide	10% / pH13	√
Chlorine Water	Saturated	×	Sea Water	100%	С
Chloro Benzene	100%	С	Sulphur Dioxide Solution	10%	√
Citric Acid Aqueous Solution	Saturated	✓	Sulphur Dioxide (40°C)	5%	✓
Cyclohexanol	100%	✓		10%	✓
Diesel Fuel	100%	С	Sulphuric Acid	30%	✓
Diethylene Glycol	100%	✓	Turpentine	100%	С
Ethanol	95%	×	White Spirit	100%	✓
Heptane	100%	С	Xylene	100%	×

 $[\]checkmark$ = Resistant to 75°C with at least 80% of physical properties retained.


C = Contact only to a maximum of 25°C. $\times = Not$ resistant.

Solid Substrate Installation Method

- 1. Drill the hole to the correct diameter and depth. This can be done with either a rotary percussion or rotary hammer drilling machine depending upon the substrate.
- 2. Thoroughly clean the hole in the following sequence using a brush with the required extensions and a source of clean compressed air. For holes of 400mm or less deep, a blow pump may be used: Blow Clean x2 → Brush Clean x2 → Brush Clean x2 → Blow Clean x2.

If the hole collects water, the current best practice is to remove standing water before cleaning the hole and injecting the resin. Ideally, the resin should be injected into a properly cleaned, dry hole.

- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge/foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. If necessary, cut the extension tube to the depth of the hole and push onto the end of the mixer nozzle, and (for rebars 16mm dia. or more) fit the correct resin stopper to the other end. Attach extension tubing and resin stopper.
- 6. Insert the mixer nozzle (resin stopper / extension tube if applicable) to the bottom of the hole. Begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the hole to approximately ½ to ¾ full and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- 8. Any exces resin will be expelled from the hole evenly around the steel element showing that the hole is full. This excess resin should be removed from around the mouth of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time, has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Installation Parameters - Threaded Rods	S									
Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal Drill Hole Diameter	d _o	mm	10	12	14	18	22	26	30	35
Diameter of Cleaning Brush	d _b	mm	14	14	20	20	29	29	40	40
Torque Moment	T _{inst}	Nm	10	20	40	80	150	200	240	275
Minimum Embedment Depth	h _{ef}	mm	64	80	96	128	160	192	216	240
Maximum Embedment Depth	h _{ef}	mm	160	20	240	320	400	480	540	600
Minimum Edge Distance	C _{min}	mm	35	40	50	65	80	96	110	120
Minimum Spacing	S _{min}	mm	35	40	50	65	80	96	110	120
Minimum Member Thickness	h _{min}	mm	h _{ef} + 3	0 mm ≥ 1	.00mm		h _{ef} + 2d _o			

Characteristic Resistance - Combined Pullou	t & Con	crete Cone	e Failur	e Using	Thread	led Rod	s			
Size			M8	M10	M12	M16	M20	M24	M27	M30
Characteristic Bond Resistance in Uncracked Concrete For a Working Life of 50 Years and 100 Years Dry/Wet Concrete -40°C to 80°C	$ au_{ ext{Rk,uncr}}$	N/mm²	10.0	9.5	9.5	9.0	8.5	8.0	6.5	5.5
Characteristic Bond Resistance in Uncracked Concrete Working Life of 50 Years and 100 Years Flooded Holes -40°C to 80°C	$ au_{ ext{Rk,uncr}}$	N/mm²	8.5	7.5	7.0	7.0	6.5	5.5	-	-
Partial Safety Factor Dry/Saturated Concrete Flooded Holes	γ _{inst}	[-]				1.2	1.4		1.4	
Characteristic Bond Resistance in Cracked Concrete Working Life of 50 Years Dry/Wet Concrete and flooded holes -40°C to 80°C	τ _{Rk,cr}	N/mm²	-	4.5	4.5	4.5	4.0	4.0	-	-
Characteristic Bond Resistance in Cracked Concrete Working Life of 100 Years Dry/Wet Concrete and flooded holes -40°C to 80°C	τ _{Rk,cr}	N/mm³	-	3.0	3.0	3.0	2.5	2.5	-	-
Partial Safety Factor Dry/Saturated Concrete Flooded Holes	Yinst	[-]				1.2 1.4			-	-
Factor for Concrete	Ψ _c	C30/37 C40/50				1.12			-	-
Factor For Influence of Sustained Loading for a working like of 50 years	Ψ_{sus}	C50/60 T2: 50/80				1.30 0.73			-	-

Splitting Failure										
Size	M8	M10	M12	M16	M20	M24	M27	M30		
Edge Distance	C _{cr,sp}	mm	1.5hef							
Spacing	S _{cr,sp}	mm	3hef							

Resistance Values for Threaded Rod in Uncracked Concrete - 50 Years and 100 years Working Life Combined Pullout & Concrete Cone Failure and Concrete Cone Failure Temperature Range: -40°C to 80°C											
Property		Unit				_	or Diamete				
		1	M8	M10	M12	M16	M20	M24	M27	M30	
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240	
Design Resistance	N _{Rd}	kN	8.5	13.0	19.0	32.0	47.0	64.0	56.5	59.0	
Effective Embedment Depth = 8d	h _{ef}	mm	64	80	96	128	160	192	216	240	
Design Resistance	N _{Rd}	kN	8.5	13.0	19.0	32.0	47.0	64.0	56.5	59.0	
Effective Embedment Depth = 10d	h _{ef}	mm	80	100	120	160	200	240	324	360	
Design Resistance	N_{Rd}	kN	11.0	16.5	23.5	40.0	59.0	80.0	85.0	88.5	
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	288	540	600	
Design Resistance	N _{Rd}	kN	13.0	19.5	28.5	48.0	71.0	96.5	141.5	148	

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

- 2. Resistance values are for single anchors without close edges or eccentric loading considerations.
- 3. Tabulated values correspond to the above stated temperature range and installation conditions only.
- 4. Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.
- 5. The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.
- 6. Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Resistance Values for Threaded Rod in Cracked Concrete - 50 Years Working life Combined Pullout & Concrete Cone Failure and Concrete Cone Failure Temperature Range: -40°C to 80°C										
Property		Unit					or Diamet			
			M8	M10	M12	M16	M20	M24	-	-
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	-	80	96	128	160	192	-	-
Design Resistance	N_{Rd}	kN	-	6.0	9.0	16.0	22.0	32.0	-	-
Effective Embedment Depth = 12d	h _{ef}	mm	-	120	144	192	240	288	-	-
Design Resistance	N_{Rd}	kN	-	9.0	13.5	24.0	33.5	48.0	-	-
Effective Embedment Depth = 20d	h _{ef}	mm	-	200	240	320	400	480	-	-
Design Resistance	N_{Rd}	kN	-	15.5	22.5	40.0	55.5	80.0	-	-

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

^{2.} Resistance values are for single anchors without close edges or eccentric loading considerations.

^{3.} Tabulated values correspond to the above stated temperature range and installation conditions only.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

^{5.} The cylinder compressive strength of the concrete (fck),is assumed to be 20 N/mm2.

^{6.} Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Resistance Values for Threaded Rod in Cracked Concrete - 100 Years Working life Combined Pullout & Concrete Cone Failure and Concrete Cone Failure Temperature Range: -40°C to 80°C Anchor Diameter Unit Property M10 M8 M12 M16 M20 M24 Effective Embedment Depth = MIN = 8d h_{ef} mm 80 96 128 160 200 ${\rm N}_{\rm Rd}$ kΝ 4.0 6.0 10.5 13.5 20.0 Design Resistance Effective Embedment Depth = 12d 120 144 192 240 300 h_{ef} mm ${\rm N}_{\rm Rd}$ 6.0 9.0 16.0 20.5 30.0 Design Resistance kΝ h_{ef} Effective Embedment Depth = 20d mm 200 240 320 400 500 Design Resistance N_{Rd} kΝ 10.0 15.0 26.5 34.5 50.0

^{6.} Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Threaded Rods - Characteristic Values for S	teel Fail	ure (Tensio	on)							
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 4.6	N _{Rk,s}	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	Умs	[-]					2			
Steel Grade 5.8	N _{Rk,s}	kN	18	29	42	79	123	177	230	281
Partial Safety Factor	У _{Мs}	[-]		1.50						
Steel Grade 8.8	N _{Rk,s}	kN	29	46	67	126	196	282	367	449
Partial Safety Factor	Умs	[-]					1.50			
Steel Grade 10.9*	N _{Rk,s}	kN	37	58	84	157	245	353	459	561
Partial Safety Factor	y _{Ms}	[-]					1.33		•	
Stainless Steel Grade A4-70	N _{Rk,s}	kN	26	41	59	110	172	247	321	393
Partial Safety Factor	Умs	[-]					1.87			
Stainless Steel Grade A4-80	$N_{Rk,s}$	kN	29	46	67	126	196	282	367	449
Partial Safety Factor	У _{Мs}	[-]	1.60							
Stainless Steel Grade 1.4529	$N_{Rk,s}$	kN	26	41	59	110	172	247	321	393
Partial Safety Factor	Умs	[-]					1.50	-		

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

^{2.} Resistance values are for single anchors without close edges or eccentric loading considerations.

^{3.} Tabulated values correspond to the above stated temperature range and installation conditions only.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

^{5.} The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

Threaded Rods - Characteristic Values for Sto	eel Fail	ıre (Shear	– with	out leve	er arm)					
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 4.6	$V_{Rk,s}$	kN	7	12	17	31	49	71	92	112
Partial Safety Factor	y _{Ms}	[-]		•			1.67			
Steel Grade 5.8	$V_{Rk,s}$	kN	9	15	21	39	61	88	115	140
Partial Safety Factor	y _{Ms}	[-]					1.25			
Steel Grade 8.8	$V_{Rk,s}$	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	y _{Ms}	[-]	1.25							
Steel Grade 10.9*	$V_{Rk,s}$	kN	18	29	42	79	123	177	230	281
Partial Safety Factor	y _{Ms}	[-]					1.50			
Stainless Steel Grade A4-70	$V_{Rk,s}$	kN	13	20	30	55	86	124	161	196
Partial Safety Factor	y _{Ms}	[-]		•	-		1.56			
Stainless Steel Grade A4-80	$V_{Rk,s}$	kN	15	23	34	63	98	141	184	224
Partial Safety Factor	y _{Ms}	[-]	1.33							
Stainless Steel Grade 1.4529	$V_{Rk,s}$	kN	13	20	30	55	86	124	161	196
Partial Safety Factor	y _{Ms}	[-]	1.25							

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Threaded Rods - Characteristic Valu	ies ioi steel railt	ire (Silicai						1		
Size			M8	M10	M12	M16	M20	M24	M27	M30
Steel Grade 4.6	$M^0_{Rk,s}$	N.m	15	30	52	133	260	449	666	900
Partial Safety Factor	Y _{Ms}	[-]					1.67			
Steel Grade 5.8	$M^0_{Rk,s}$	N.m	19	37	66	166	325	561	832	1125
Partial Safety Factor	У _{Мs}	[-]				•	1.25			
Steel Grade 8.8	$M^0_{Rk,s}$	N.m	30	60	105	266	519	898	1332	1799
Partial Safety Factor	У _{Мs}	[-]					1.25			
Steel Grade 10.9*	$M^0_{Rk,s}$	N.m	37	75	131	333	649	1123	1664	2249
Partial Safety Factor	У _{Мs}	[-]	1.50							
Stainless Steel Grade A4-70	$M^0_{Rk,s}$	N.m	26	52	92	233	454	786	1165	1574
Partial Safety Factor	У _{Мs}	[-]					1.56			
Stainless Steel Grade A4-80	$M^0_{Rk,s}$	N.m	30	60	105	266	519	898	1332	1799
Partial Safety Factor	Y _{Ms}	[-]					1.33			
Stainless Steel Grade 1.4529	$M^0_{Rk,s}$	N.m	26	52	92	233	454	786	1165	1574
Partial Safety Factor	У _{Мs}	[-]	1.25							
Concrete pryout failure										
Factor k **		-	2							
Partial Safety Factor		Y _{Ms}	1.50							

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

^{**} K Value from TR029 Design of bonded anchors pt 5.2.3.3

Installation Parameters - Rebar										
Size			8	10	12	16	20	25	32	
Nominal Drill Hole Diameter	d _o	mm	12	14	16	20	25	32	40	
Diameter of Cleaning Brush	d _b	mm	14	14	19	22	29	40	42	
Minimum Embedment Depth	h _{ef}	mm	64	80	96	128	160	200	256	
Maximum Embedment Depth	h _{ef}	mm	160	200	240	320	400	500	640	
Minimum Edge Distance	C _{min}	mm	35	40	50	65	80	100	130	
Minimum Spacing	S _{min}	mm	35	40	50	65	80	100	130	
Minimum Member Thickness	h _{min}	mm	h _{ef} + 3	0 mm ≥ 1	.00mm		h _{ef}	+ 2d _o		

Characteristic Resis	tance - Combined Pullout	& Con	crete Cone	Failur	e for Re	ebar					
Rebar Diameter (mm)				8	10	12	16	20	25	32	
	esistance in Uncracked ng Life of 50 and 100 Years d Flooded Holes	$ au_{ m Rk,uncr}$	N/mm²	11.0	9.5	9.5	9.0	8.5	8.5	5.5	
Installation Factor	Dry/saturated Concrete Flooded Holes	γ _{inst}	[-]	1.2 1.4							
Factor for Concrete		Ψ _c	C50/60				1.00				
Factor for Influence of working life of 50 year		Ψ_{sus}	T2: 50/80	2: 50/80 0.73							

Splitting Failure - Rebar									
Size 8 10 12 16 20 25 32									
Edge Distance	C _{cr,sp}	mm	2h _{ef}						
Spacing	S _{cr,sp}	mm	2 C _{cr,sp}						

Resistance Values for Reinforcing Bars in Uncracked Concrete - 50 and 100 years working life Combined Pullout & Concrete Cone Failure and Concrete Cone Failure Temperature Range: -40°C to 80°C											
Property					R	ebar Dia	meter				
Troperty				10mm	12mm	16mm	20mm	25mm	32mm		
Effective Embedment Depth = MIN = 8d h_{ef} mm 64 80 96 128 160 200 29									256		
Design Resistance	N_{Rd}	kN	9.5	13.0	19.0	32.0	47.0	74.0	78.5		
Effective Embedment Depth = 12d	h _{ef}	mm	96	120	144	192	240	300	384		
Design Resistance	N_{Rd}	kN	14.5	19.5	28.5	48.0	71.0	111.0	117.5		
Effective Embedment Depth = 20d									640		
Design Resistance N _{Rd} kN 24.5 33.0 47.5 80.0 118.5 185.0 196.5									196.5		

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4 Resistance for steel failure must also be considered - the lowest value controls.

^{2.} Resistance values are for single anchors without close edges or eccentric loading considerations.

^{3.} Tabulated values correspond to the above stated temperature range and installation conditions only.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

^{5.} The cylinder compressive strength of the concrete (fck),is assumed to be 20 N/mm2.

^{6.} Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Seismic Category C1										
Characteristic Resistance - Combined Pullout & Concrete Cone Failure Using Threaded Rods										
Size M10 M12 M16 M20 M24										
Characteristic Bond Resistance Category C1 for 50 years working life $\tau_{Rk,uncr}$ N/m $^{-40}^{\circ}$ C to 80° C						3.5	3.5			
0 ,	$ au_{ m Rk,uncr}$	N/mm²	3.2	3.2	3.2	2.2	2.2			
Dry Concrete Flooded Holes	Yinst	[-]	1.2 1.4							
Factor for Concrete		C30/37 C40/50	1.12 1.23							
	istance Category C1 estimate Category C1 fe Dry Concrete	istance Category C1 $\tau_{Rk,uncr}$ istance Category C1 $\tau_{Rk,uncr}$ $\tau_{Rk,uncr}$ $\tau_{Rk,uncr}$ $\tau_{Rk,uncr}$ $\tau_{Rk,uncr}$ $\tau_{Rk,uncr}$	istance Category C1 $\tau_{Rk,uncr}$	nce - Combined Pullout & Concrete Cone Failum M10 istance Category C1 $\tau_{Rk,uncr} = \frac{N/mm^2}{N/mm^2} = \frac{3.5}{3.5}$ istance Category C1 $\tau_{Rk,uncr} = \frac{N/mm^2}{N/mm^2} = \frac{3.2}{3.2}$ Dry Concrete Flooded Holes $\frac{\Gamma_{Rk,uncr}}{\Gamma_{Rk,uncr}} = \frac{\Gamma_{Rk,uncr}}{\Gamma_{Rk,uncr}} = \frac$	nce - Combined Pullout & Concrete Cone Failure Using $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nce - Combined Pullout & Concrete Cone Failure Using Threader $\frac{\text{M10}}{\text{Concrete Category C1}} = \frac{\text{M10}}{\tau_{Rk,uncr}} \frac{\text{M10}}{\text{N/mm}^2} = \frac{\text{M10}}{3.5} = \frac{\text{M16}}{3.5}$ istance Category C1 fee $\frac{\tau_{Rk,uncr}}{\tau_{Rk,uncr}} = \frac{\tau_{Rk,uncr}}{\tau_{Rk,uncr}} = \tau_{Rk,unc$	nce - Combined Pullout & Concrete Cone Failure Using Threaded Rods $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Seismic Category C1 Threaded Rods - Characteristic Values for Steel Failure (Tension)											
Size			M10	M12	M16	M20	M24				
Steel Grade 4.6	$N_{Rk,s}$	kN	23	34	63	98	141				
Partial Safety Factor	У _{Мs}	[-]		,	2						
Steel Grade 4.8	$N_{Rk,s}$	kN	23	34	63	98	141				
Partial Safety Factor	У мs	[-]			1.5						
Steel Grade 5.6	$N_{Rk,s}$	kN	29	42	79	123	177				
Partial Safety Factor	У _{Мs}	[-]		,	2.00						
Steel Grade 5.8	N _{Rk,s}	kN	29	42	79	123	177				
Partial Safety Factor	y _{Ms}	[-]			1.50						
Steel Grade 8.8	$N_{Rk,s}$	kN	46	67	126	196	282				
Partial Safety Factor	У _{Мs}	[-]		,	1.50						
Steel Grade 10.9*	$N_{Rk,s}$	kN	58	84	157	245	353				
Partial Safety Factor	y _{Ms}	[-]			1.40						
Stainless Steel Grade A4-70	$N_{Rk,s}$	kN	41	59	110	172	247				
Partial Safety Factor	У _{Мs}	[-]			1.90						
Stainless Steel Grade A4-80	$N_{Rk,s}$	kN	46	67	126	196	282				
Partial Safety Factor	Y _{Ms}	[-]			1.60						
Stainless Steel Grade 1.4529	$N_{Rk,s}$	kN	41	59	110	172	247				
Partial Safety Factor	Y _{Ms}	[-]			1.50						

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Three ded Dede Chereateristic Ve	luca for Charl F	'ail <i>16</i>	`h	:4h4 l -			
Threaded Rods - Characteristic Va Size	liues for Steel F	allure (S	M10	M12	M16	M20	M24
Steel Grade 4.6	$V_{Rk,s}$	kN	12	17	31	49	71
Partial Safety Factor	У _{Мs}	[-]			1.67		•
Steel Grade 4.8	$V_{Rk,s}$	kN	12	17	31	49	71
Partial Safety Factor	У _{Мs}	[-]			1.25		
Steel Grade 5.6	$V_{Rk,s}$	kN	15	21	39	61	88
Partial Safety Factor	У _{Мs}	[-]			1.68		
Steel Grade 5.8	$V_{Rk,s}$	kN	15	21	39	61	88
Partial Safety Factor	У _{Мs}	[-]	1.25				
Steel Grade 8.8	$V_{Rk,s}$	kN	23	34	63	98	141
Partial Safety Factor	У _{Мs}	[-]			1.25		
Steel Grade 10.9*	$V_{Rk,s}$	kN	29	42	79	123	177
Partial Safety Factor	У _{Мs}	[-]			1.50		
Stainless Steel Grade A4-70	$V_{Rk,s}$	kN	20	30	55	86	124
Partial Safety Factor	У _{Мs}	[-]			1.56		
Stainless Steel Grade A4-80	$V_{Rk,s}$	kN	23	34	63	98	141
Partial Safety Factor	У _{Мs}	[-]			1.33		
Stainless Steel Grade 1.4529	$V_{Rk,s}$	kN	20	30	55	86	124
Partial Safety Factor	y _{Ms}	[-]			1.25		

^{*}Galvanized rods of high strength are sensitive to hydrogen induced brittle failure.

Resistance Values for Threaded Rod in S	Seismic C	ategory	C1 - 50 ye	ears wor	king life		
Combined Pullout & Concrete Cone Failure and Co Temperature Range: -40°C to 80°C	ncrete Con	e Failure					
Property		Jnit		An	chor Diame	eter	
11000.17		o i ii c		M12	M16	M20	M24
Effective Embedment Depth = MIN = 8d	h = MIN = 8d h _{ef} mm 80 96 128 160						
Design Resistance	N _{Rd}	kN	4.5	7.0	12.5	19.5	29.0
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288
Design Resistance	N _{Rd}	kN	7.0	10.5	18.5	29.0	42.0
Effective Embedment Depth = STD	h _{ef}	mm	90	110	128	170	210
Design Resistance	N _{Rd}	kN	5.0	8.0	12.5	20.5	30.5
Effective Embedment Depth = MAX = 20d	h _{ef}	mm	200	240	320	400	480
Design Resistance	N _{Rd}	kN	12.0	17.5	31.0	48.5	70.0

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

^{2.} Resistance values are for single anchors without close edges or eccentric loading considerations.

^{3.} Tabulated values correspond to the above stated temperature range and installation conditions only.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

^{5.} The cylinder compressive strength of the concrete (fck), is assumed to be 20 N/mm2.

^{6.} Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Resistance Values for Threaded Rod in Seismic Category C1 - 100 years working life

Combined Pullout & Concrete Cone Failure and Concrete Cone Failure

Temperature Range: -40°C to 80°C

Property		Init		An	chor Diame	eter	
Property) i ii c	M10	M12	M16	M20	M24
Effective Embedment Depth = MIN = 8d	h _{ef}	mm	80	96	128	160	200
Design Resistance	N _{Rd}	kN	4.0	6.0	11.0	12.0	18.0
Effective Embedment Depth = 12d	h _{ef}	mm	120	144	192	240	288
Design Resistance	N _{Rd}	kN	6.5	9.5	17.0	18.0	26.5
Effective Embedment Depth = MAX = 20d	h _{ef}	mm	200	240	320	400	480
Design Resistance	N _{Rd}	kN	11.0	16.0	28.5	30.5	44.0

^{1.} Resistance values are based on combined pullout & concrete cone failure and concrete cone failure according to EC2-4. Resistance for steel failure must also be considered - the lowest value controls.

^{2.} Resistance values are for single anchors without close edges or eccentric loading considerations.

^{3.} Tabulated values correspond to the above stated temperature range and installation conditions only.

^{4.} Long term temperatures are those that remain roughly constant over prolonged periods. Short term temperatures occur over brief intervals, e.g.: diurnal cycling.

^{5.} The cylinder compressive strength of the concrete (fck),is assumed to be 20 N/mm2.

^{6.} Tabulated resistance values assume that the geometry of the anchor(s) and concrete member is sufficient to avoid splitting failure.

Post Installed	l Rebar - Inst	allation Parameters				
Reb	oar	Drill hole Diameter		Min. Anchorage	Min. Lap/Splice	Max. Embedment
Diameter	f_{yk}	(mm)	Cleaning Brush	Length (mm)	Length (mm)	Depth (mm)
(mm)	(N/mm ²)	()		25.18.11 ()	20118011 (11111)	-
8	500	12 (10)	Hybrid 13/14F	113	200	400
10	500	14 (12)	Hybrid 19/20F	141	215	500
12	500	16	Hybrid 19/20F	170	260	600
14	500	18	Hybrid 19/20F	198	300	700
16	500	20	Hybrid 22/24F	226	345	800
20	500	25	Hybrid 28/29F	283	430	1000
25	500	32	Hybrid 40/42F	354	535	1000

note - Installation parameters are based on C20/25 concrete

Minimum Anchorage Length:

 $I_{\text{bPIR}} = \alpha_{\text{lb}} \bullet \, \ell_{\text{b,min}}$

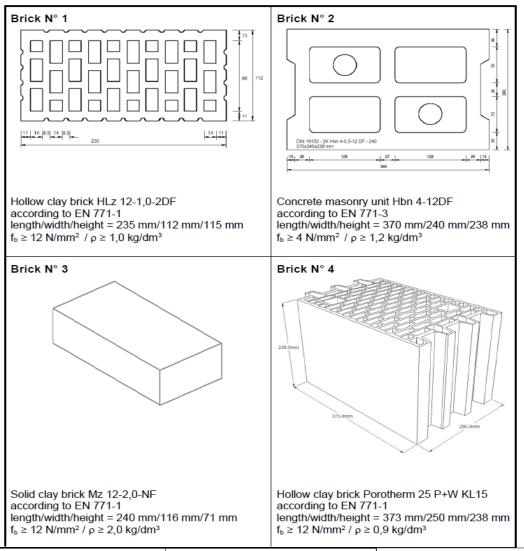
 α_{lb} = amplification factor for minimum anchorage length

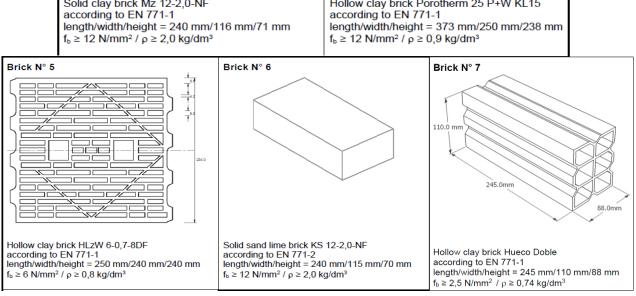
€b,min = minimum anchorage length of cast-in rebar according to EN 1992-1-1, eq. 8.6

Design Bond Strength for 50 and 100 years working life											
		Concrete Class									
Rebar Diameter (mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60		
8	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30		
10	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30		
12	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30		
14	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30		
16	1.60	2.00	2.30	2.70	3.00	3.40	3.70	4.00	4.30		
20	1.60	2.00	2.30	2.70	3.00	3.40	3.70				
25	1.60	2.00	2.30	2.70	3.00						

Note:

Tabulated values are valid for good bond conditions according to EN 1992-1-1.


For all other bond conditions multiply the values by 0.7.


Values for bond strengths have had reduction factors applied.

Amplification	Amplification Factor For Embedment Depth										
Rebar	Amplification Factor	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8											
10											
12											
14	$\mathbf{\alpha}_{lb}$					1					
16	15										
20											
25											

High Load v1.0 09/2024 13/17

Dimensions of Bricks

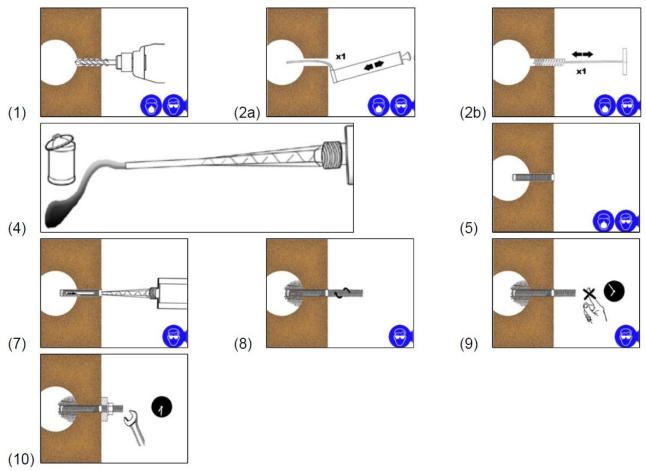
High Load v1.0 09/2024

Installation parameters in solid and ho	ollow mason	ıry								
Anchor Type	Anchor Rod									
Size			M8 M10 M12 M8 M10			10	M12			
Sieve Sleeve	l _s	[mm]			8	35	8	35	85	
	d _s	[mm]	-	-	-	15	16	15	16	20
Nominal drill hole diameter	d _o	[mm]	15	15	20	15	16	15	16	20
diameter of cleaning brush	d _b	[mm]	20 ^{±1}	20 ^{±1}	20 ^{±1}	20 ^{±1} 20 ^{±1}		20 ^{±1}		
depth of drill hole	h ₀	[mm]	90							
Effective anchorage depth	h _{ef}	[mm]	85							
Diameter of clearence hole in the fixture	d _f ≤	[mm]	9	12	14		9	1	12	14
Torque moment	T _{inst} ≤	[mm]				2				

Edge distances and spacing									
Anchor rod									
		M8			M10			M12	
Base Material	C _{cr} =C _{min}	S _{cr} = S _{min}	$S_{cr} \perp = S_{min} \perp$	C _{cr} =C _{min}	S _{cr} = S _{min}	Scr⊥ = Smin⊥	Ccr=Cmin	S _{cr} = S _{min}	$S_{cr} \perp = S_{min} \perp$
	mm	mm	mm	mm	mm	mm	mm	mm	mm
Brick No 1	100	235	115	100	235	115	120	235	115
Brick No 2	100	370	238	100	370	238	120	370	238
Brick No 3	128	255	255	128	255	255	128	255	255
Brick No 4	100	373	238	100	373	238	120	373	238
Brick No 5	100	250	240	100	250	240	120	250	240
Brick No 6	128	255	255	128	255	255	128	255	255
Brick No 7	100	245	110	100	245	110	120	245	110

Characteristic resistance under tension and shear loading									
		Anchor Rods							
Base Material	M8	M10	M12						
	NRK=VRK [KN] 1)	NRK=VRK [KN] 1)	NRK=VRK [KN] 1)						
Brick No 1	2.0	2.0	2.0						
Brick No 2	2.0	1.5	2.5						
Brick No 3	1.5	1.5	2.5						
Brick No 4	1.2	1.2	1.2						
Brick No 5	1.2	0.9	0.9						
Brick No 6	0.75	0.75	1.2						
Brick No 7	0.75	0.5	0.5						

Characteristic Bending Moment								
	Anchor Diameter							
Steel Grade	M8	M10	M12					
	$M_{Rk,s}$	$M_{Rk,s}$	MRk,s					
Steel Grade 5.8	19	37	66					
Steel Grade 8.8	30	60	105					
Steel Grade 10.9*	37	75	131					
Stainless Steel A2-70, A4-70	26	52	92					
Stainless Steel A4-80	30	60	105					
Stainless Steel 1.4529 strength class 70	26	52	92					
Stainless Steel 1.4565 strength class 70	26	52	92					


Displacements under tension and shear load									
Base Material	F (kN)	δN0 [mm]	δN∞ [mm]	δV0 [mm]	δV∞ [mm]				
Solid Bricks	NRk/(1.4 · yM)	0.6	1.2	1.0	1.5				
Perforated & Hollow Bricks	NNK/(1.4 · VIVI)	0.14	0.28	1.0	1.5				

β - Factors for Job Site Test According to TR053								
Brick No.	No 1	No 2	No 3	No 4	No 5	No 6	No 7	
β - Factor	0.62	0.6	0.48	0.65	0.43	0.26	0.65	

High Load v1.0 09/2024

Hollow Masonry Insallation Method

- 1. Drill the hole to the correct diameter and depth. This should be done with a rotary percussion drilling machine to reduce spalling.
- 2. Thoroughly clean the hole in the following sequence using a Brush with the required extensions and a source of clean compressed air. For holes 400mm or less deep, a blow pump may be used: Brush clean x 1 Blow Clean x1
- 3. Select the appropriate static mixer nozzle for the installation, open the cartridge foil pack and screw nozzle onto the mouth of the cartridge. Insert the cartridge into a good quality applicator.
- 4. Extrude the first part of the cartridge to waste until an even colour has been achieved without streaking in the resin.
- 5. Select the appropriate perforated sleeve and insert into the hole.
- 6. Insert the mixer nozzle to the bottom of the perforated sleeve, withdraw 2-3mm then begin to extrude the resin and slowly withdraw the mixer nozzle from the hole ensuring that there are no air voids as the mixer nozzle is withdrawn. Fill the perforated sleeve and withdraw the nozzle completely.
- 7. Insert the clean threaded bar, free from oil or other release agents, to the bottom of the hole using a back and forth twisting motion ensuring all the threads are thoroughly coated. Adjust to the correct position within the stated working time.
- 8. Any excess resin will be expelled from the hole evenly around the steel element showing that the hole if full. This excess resin should be removed from around the mouth of the hole before it sets.
- 9. Leave the anchor to cure. Do not disturb the anchor until the appropriate loading time has elapsed depending on the substrate conditions and ambient temperature.
- 10. Attach the fixture and tighten the nut to the recommended torque. Do not overtighten.

Note:

For solid masonry applications, please refer to 'Solid Substrate Installation Method'.

High Load v1.0 09/2024

Important Notes:

Use in Porous Substrates

This bonded anchor is not intended for use as a cosmetic or decorative product. When anchoring into porous or reconstituted stone it is recommended that technical assistance is sought. Due to the nature of the product, migration of the monomer in the resin may cause staining in certain materials. If you are still uncertain, it is advisable to test the resin by applying it in a small, discrete area and testing before using the resin on the project.

Important Note

Whilst all reasonable care is taken in compiling technical data on the Company's products, all recommendations or suggestions regarding the use of such products are made without guarantee, since the conditions of use are beyond the control of the Company. It is the customer's responsibility to satisfy himself that each product is fit for the purpose for which he intends to use it, that the actual conditions of use are suitable and that, in the light of our continual research and development programme the information relating to each product has not been superseded.

Scell-it (UK) Group Limited

Unit 7, Beacon Business Park, Weston Road, Stafford ST18 0DG United Kingdom

Tel: +44 (0) 1785 246539 Email: sales@scellit.co.uk Website: www.scellit.co.uk