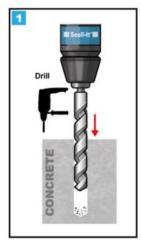
CHARACTERISTICS

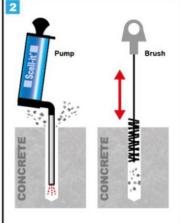
The Ankerbolt is a zinc plated self tapping anchor for use in a variety of base materials.

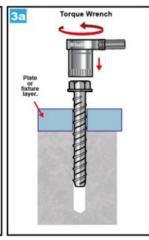
The undercutting action provides a positive anchorage with no expansion forces.

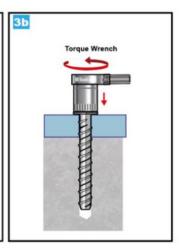
The wide range of types and sizes gives flexibility of choosing the correct anchor according to the fixture thickness.

FEATURES


- Undercutting action
- Fast and secure installation
- Expansion free
- Through Fixing
- High performance


- Zinc plated minimum 5µm
- Mechanical galvanised minimum 40 µm


BASE MATERIAL


- Concrete C20/25 to C50/60
- Non-Cracked Concrete
- Hollow Concrete Planks
- Solid Brickwork
- Concrete Block
- Natural Stone

INSTALLATION

1.Drill the hole

Drill a hole to the correct depth and diameter as recommended by the manufacturer. Hole diameter is normally slightly smaller than the screwbolt to allow for 'cutting in' to the substrate. Additionally, the hole should be longer than the screw to provide space for any debris that may collect during installation, preventing it from obstructing the process.

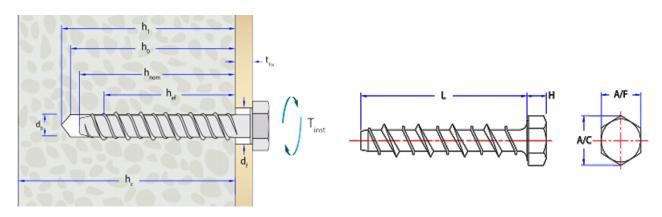
2. Clean the hole

Use a wire brush smaller than the diameter of the hole to thoroughly remove dust and debris. Rotate the brush in a circular and up-and-down motion. Blow out dust with an air pump. Repeat this process to quarantee a clean and debris-free hole (fig. 2).

3.Install the anchor

Insert anchor into hole by screwing into base material with a mechanical impact wrench or a torque wrench. Apply pressure to head of bolt to ensure engagement of first thread (fig. 3a). If resistance is encountered when screwing down the bolt, simply unscrew two turns to release trapped dust, and then continue to tighten down. Screw anchor into concrete until the head

shoulders firmly with the fixture and stop (fig. 3b). The anchor should not be able to be tightened further. Do not overtighten the screw as this will weaken the installation.



■ Construction Fixings ■ Rivets & Rivnuts ■ Setting Tools

					RA	NGE	ATAC						
					Shal	low Embed	Iment	Dee	p Embedn	nent			
	Drill Hole	Thread	Anchor	Fixture	Max Fixture	Min Hole	Embed-	Max Fixture	Min Hole	Embed -	Min	Width	Tightening
Part Number	Diameter	Diameter	Length	Clearance	Thickness	Depth	ment	Thickness	Depth	ment	Structure	Across	Torque
	(d _o)	(d _{nom})	(L)	Hole	(t _{fix})	(h ₁)	Depth	(t _{fix})	(h ₁)	Depth	Thickness	Flats	(T _{inst})
				(d _f)			(h _{nom})			(h _{nom})	(h _c)	(A/F)	
	mm	mm	mm	mm	MM XAGC	mm NFLA	MM ANGE	MM HEAD	mm	mm	mm	mm	Nm
NA-BT-05100	5	6	100	8	75	35	25	63	50	37	100	8	15
NA-BT-06050 *			50		20			5					
NA-BT-06075 *			75		45			30					25
NA-BT-06100 *	6	8	100	10	70	40	30	55	55	45	100	10	
NA-BT-06130			130		100			85					
NA-BT-06150			150		200			105					
					HEX	(AGOI	N HEA	D					
NA-BT-08060 *			60		20		40	N/A	75				
NA-BT-08075			75	1	35	55		15		60	120	15	40
NA-BT-08100 *	8	10	100	12	60			40					
NA-BT-08130			130		90			70					
NA-BT-08150 *			150		110			90					
NA-BT-10060 *			60		10		50	N/A	95	75	125	17	60
NA-BT-10075			75		25			N/A					
NA-BT-10100 *	10	12	100	14	50	70		25					
NA-BT-10130			130		80			55					
NA-BT-10150 *			150		100			75					
NA-BT-12075			75		15			N/A					
NA-BT-12100 *			100		40			10					
NA-BT-12130	12	14	130	16	70	85	60	40	115	90	140	19	80
NA-BT-12150 *			150	1	90			60					
NA-BT-12200 *			200		140			110					
NA-BT-16100 **			100		20			N/A					
NA-BT-16150 **	16	18	150	20	70	110	80	35	145	115	190	27	100
NA-BT-16200 **			200		120			85					

^{*} The Mechanical Galvanised (minimum 40µm) version is available. ** Mechanical Galvanised minimum 40µm.

■ Construction Fixings ■ Rivets & Rivnuts

Setting Tools

Tel: 01785 246539 Email: sales@scellit.co.uk

NON-CRACKED CONCRETE - SHALLOW EMBEDMENT

Performance Data (C20/25 non-cracked concrete)												
Drill	Overall	Minimum										
Diam	Embedment	Concrete	Characteristic Resistance		Design Resistance		Approved Resistance		Design Spacing (s)		Design Edge Distance (c)	
(d ₀)	Depth	Thickness										
	(h _{nom})	(h _{min})	Tensile (N _{Rk})	Shear (V _{Rk})	Tensile (N _{Rd})	Shear (V _{Rd})	Tensile(N _{Ra})	Shear (V _{Ra})	Tensile	Shear	Tensile	Shear
mm	mm	mm	kN	kN	kN	kN	kN	kN	mm	mm	mm	mm
5	25	100	3.1	3.2	1.7	2.0	1.2	1.4	50	50	30	40
6	30	100	3.9	3.8	2.1	2.5	1.5	1.7	60	60	40	40
8	40	100	6.3	6.3	3.4	4.2	2.4	3.0	70	80	50	50
10	50	100	9.3	9.1	5.0	6.0	3.5	4.2	100	100	60	70
12	60	100	12.5	12.7	6.9	8.4	4.9	6.0	120	120	70	90
14	70	100	15.3	15.2	8.4	10.3	6.0	7.3	130	140	80	110
16	80	105	19.0	18.9	10.3	12.4	7.3	8.8	160	160	110	120

NON-CRACKED CONCRETE - DEEP EMBEDMENT

Performance Data (C20/25 non-cracked concrete)													
Drill	Overall	Minimum											
Diam	Embedment	Concrete	Characteristic Resistance		Design Resistance		Approved Resistance		Design Spacing (s)		Design Edge Distance (c)		
(d ₀)	Depth	Thickness											
	(h _{nom})	(h _{min})	Tensile (N _{Rk})	Shear (V_{Rk})	Tensile (N _{Rd})	Shear (V _{Rd})	Tensile(N _{Ra})	Shear (V _{Ra})	Tensile	Shear	Tensile	Shear	
mm	mm	mm	kN	kN	kN	kN	kN	kN	mm	mm	mm	mm	
5	37	100	5.0	6.6	2.7	4.4	1.9	3.1	40	80	30	60	
6	45	100	7.5	8.7	4.1	5.6	2.9	4.0	70	90	40	70	
8	60	120	10.0	13.7	5.5	9.1	3.9	6.5	70	130	50	90	
10	75	125	15.0	20.0	8.3	13.1	5.9	9.3	90	160	60	120	
12	90	140	19.0	40.5	10.5	32.3	7.5	23.0	90	160	70	300	
14	95	170	22.0	54.1	12.2	35.7	8.7	25.5	130	200	80	300	
16	115	190	34.0	74.9	18.8	49.9	13.4	35.6	200	250	110	390	

SUPPLEMENTARY DATA

Influence Of Concrete Strength (Non-cracked Concrete)									
Concrete strength C20/25 C30/37 C40/50 C50/60									
Cylinder	N/mm²	20	30	40	50				
Cube	N/mm²	25	37	50	60				
Factor	M8, M10, M12	1.0	1.17	1.32	1.42				
	M14, M16	1.0	1.22	1.41	1.55				

Important Note:

When using concrete factors ensure that loads do not exceed Steel Design Resistance.

■ Construction Fixings ■ Rivets & Rivnuts

Tel: 01785 246539 Email: sales@scellit.co.uk

www.scellit.co.uk

Setting Tools

Scell-it® UK Ltd, Unit 7, Beacon Industrial Estate, Weston Road, Stafford ST18 0DG.

	Steel Failure										
Drill		Tensile Resistance		Shear Resistance							
Diam	Characteristic Resistance	Design Resistance	Approved Resistance	Characteristic Resistance	Design Resistance	Approved Resistance					
(d ₀)	(N _{Rk,s})	(N _{Rd,s})*	$(N_{Ra,s)}$	(V _{Rk,s})	(V _{Rd,s})**	(V _{Ra,s})					
mm	kN	kN	kN	kN	kN	kN					
8	44.2	31.6	22.6	28.5	19.0	13.6					
10	70.1	50.1	35.8	46.4	30.9	22.1					
12	101.2	72.3	51.6	57.2	38.1	27.2					
14	140.0	100.0	71.4	80.4	53.6	38.3					
16	183.9	131.4	93.8	84.4	56.3	40.2					

^{*} A partial safety factor (γ_{MS}) equal to 1.4 is included.

^{**} A partial safety factor (γ_{MS}) equal to 1.5 is included.